Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Oct 1:601:217145.
doi: 10.1016/j.canlet.2024.217145. Epub 2024 Jul 30.

Sulforaphane suppresses bladder cancer metastasis via blocking actin nucleation-mediated pseudopodia formation

Affiliations

Sulforaphane suppresses bladder cancer metastasis via blocking actin nucleation-mediated pseudopodia formation

Lei Huang et al. Cancer Lett. .

Abstract

Metastasis is the primary stumbling block to the treatment of bladder cancer (BC). In order to spread, tumor cells must acquire increased migratory and invasive capacity, which is tightly linked with pseudopodia formation. Here, we unravel the effects of sulforaphane (SFN), an isothiocyanate in cruciferous vegetables, on the assembly of pseudopodia and BC metastasis, and its molecular mechanism in the process. Our database analysis revealed that in bladder tumor, pseudopodia-associated genes, CTTN, WASL and ACTR2/ARP2 are upregulated. SFN caused lamellipodia to collapse in BC cells by blocking the CTTN-ARP2 axis. SFN inhibited invadopodia formation and cell invasion by reducing WASL in different invasive BC cell lines. The production of ATP, essential for the assembly of pseudopodia, was significantly increased in bladder tumors and strongly inhibited by SFN. Overexpressing AKT1 reversed the downregulation of ATP in SFN-treated bladder cancer cells and restored filopodia and lamellipodia morphology and function. Bioluminescent imaging showed that SFN suppressed BC metastases to the lung of nude mice while downregulating Cttn and Arp2 expression. Our study thus reveals mechanisms of SFN action in inhibiting pseudopodia formation and highlights potential targeting options for the therapy of metastatic bladder cancer.

Keywords: ARP2/3 complex; Bladder cancer; Cortactin; Glycolysis; Pseudopodia; WASL.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare no potential conflicts of interest.

MeSH terms