Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1985 Dec;158(3):169-75.
doi: 10.1016/0165-1218(85)90080-1.

Photodynamic mutagenic action of acridine compounds on yeast Saccharomyces cerevisiae

Comparative Study

Photodynamic mutagenic action of acridine compounds on yeast Saccharomyces cerevisiae

Y Iwamoto et al. Mutat Res. 1985 Dec.

Abstract

The photodynamically produced mutagenicity and toxicity of 8 acridine compounds were compared in Saccharomyces cerevisiae under resting and growing conditions. Without irradiation none of the acridines induced respiratory-deficient ('petite') colonies, indicative of mitochondrial DNA damage, in resting cells; and only acriflavine and proflavine induced 'petites' in growing cells. Also, without irradiation none of the acridines were significantly toxic or mutagenic for nuclear DNA under resting or growing conditions. However, with irradiation, acriflavine, proflavine, acridine yellow and rivanol became effective 'petite'-inducing mutagens and highly toxic for resting cells, while acriflavine, proflavine, and acridine orange became effective nuclear mutagens for resting cells. Acridine, quinacrine and 9-aminoacridine were not at all biologically effective with irradiation for resting cells. The results presented here indicate that singlet oxygen is generated by a photodynamic mechanism when acriflavine is irradiated, and further, that acridine, quinacrine and 9-aminoacridine are ineffective photosensitizers, because they are incapable of generating singlet oxygen with irradiation.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources