Ubiquitous short-range order in multi-principal element alloys
- PMID: 39090088
- PMCID: PMC11294451
- DOI: 10.1038/s41467-024-49606-1
Ubiquitous short-range order in multi-principal element alloys
Abstract
Recent research in multi-principal element alloys (MPEAs) has increasingly focused on the role of short-range order (SRO) on material performance. However, the mechanisms of SRO formation and its precise control remain elusive, limiting the progress of SRO engineering. Here, leveraging advanced additive manufacturing techniques that produce samples with a wide range of cooling rates (up to 107 K s-1) and an enhanced semi-quantitative electron microscopy method, we characterize SRO in three CoCrNi-based face-centered-cubic (FCC) MPEAs. Surprisingly, irrespective of the processing and thermal treatment history, all samples exhibit similar levels of SRO. Atomistic simulations reveal that during solidification, prevalent local chemical order arises in the liquid-solid interface (solidification front) even under the extreme cooling rate of 1011 K s-1. This phenomenon stems from the swift atomic diffusion in the supercooled liquid, which matches or even surpasses the rate of solidification. Therefore, SRO is an inherent characteristic of most FCC MPEAs, insensitive to variations in cooling rates and even annealing treatments typically available in experiments.
© 2024. The Author(s).
Conflict of interest statement
The authors declare no competing interests.
Figures





Similar articles
-
Maximum strength and dislocation patterning in multi-principal element alloys.Sci Adv. 2022 Nov 11;8(45):eabq7433. doi: 10.1126/sciadv.abq7433. Epub 2022 Nov 9. Sci Adv. 2022. PMID: 36351027 Free PMC article.
-
Quantifying short-range order using atom probe tomography.Nat Mater. 2024 Sep;23(9):1200-1207. doi: 10.1038/s41563-024-01912-1. Epub 2024 Jul 2. Nat Mater. 2024. PMID: 38956352 Free PMC article.
-
Mitigating Strain Localization via Stabilized Phase Boundaries for Strengthening Multi-Principal Element Alloys.Adv Sci (Weinh). 2025 May;12(17):e2414783. doi: 10.1002/advs.202414783. Epub 2025 Mar 8. Adv Sci (Weinh). 2025. PMID: 40056019 Free PMC article.
-
Bidirectional Phase Transformations in Multi-Principal Element Alloys: Mechanisms, Physics, and Mechanical Property Implications.Adv Sci (Weinh). 2024 Oct;11(39):e2407283. doi: 10.1002/advs.202407283. Epub 2024 Aug 19. Adv Sci (Weinh). 2024. PMID: 39158938 Free PMC article. Review.
-
Recent advances in computational design of structural multi-principal element alloys.iScience. 2023 Aug 28;26(10):107751. doi: 10.1016/j.isci.2023.107751. eCollection 2023 Oct 20. iScience. 2023. PMID: 37727734 Free PMC article. Review.
Cited by
-
Trifunctional local-range order oxygen structure enhanced strength-ductility and fatigue resistance in large-scale metastable titanium alloy.Nat Commun. 2025 Aug 4;16(1):7168. doi: 10.1038/s41467-025-62646-5. Nat Commun. 2025. PMID: 40759660 Free PMC article.
-
High-entropy assisted capacitive energy storage in relaxor ferroelectrics by chemical short-range order.Nat Commun. 2025 Jan 18;16(1):807. doi: 10.1038/s41467-025-56181-6. Nat Commun. 2025. PMID: 39827268 Free PMC article.
-
Intrinsic Electronic Structure and Inhomogeneity of High-Entropy Layered REOBiS2 Superconductors.Inorg Chem. 2025 Jun 9;64(22):11260-11267. doi: 10.1021/acs.inorgchem.5c01680. Epub 2025 May 29. Inorg Chem. 2025. PMID: 40439579 Free PMC article.
References
-
- Yeh, J. W. et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv. Eng. Mater.6, 299–303 (2004).10.1002/adem.200300567 - DOI
-
- Cantor, B., Chang, I., Knight, P. & Vincent, A. Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A375, 213–218 (2004).10.1016/j.msea.2003.10.257 - DOI
-
- Zhang, Y. et al. Microstructures and properties of high-entropy alloys. Prog. Mater. Sci.61, 1–93 (2014).10.1016/j.pmatsci.2013.10.001 - DOI
-
- Miracle, D. B. & Senkov, O. N. A critical review of high entropy alloys and related concepts. Acta Mater.122, 448–511 (2017).10.1016/j.actamat.2016.08.081 - DOI