Coadministration of 6-Shogaol and Levodopa Alleviates Parkinson's Disease-Related Pathology in Mice
- PMID: 39092515
- PMCID: PMC11392672
- DOI: 10.4062/biomolther.2024.075
Coadministration of 6-Shogaol and Levodopa Alleviates Parkinson's Disease-Related Pathology in Mice
Abstract
Parkinson's disease (PD) is a neurodegenerative disease caused by the death of dopaminergic neurons in the nigrostriatal pathway, leading to motor and non-motor dysfunctions, such as depression, olfactory dysfunction, and memory impairment. Although levodopa (L-dopa) has been the gold standard PD treatment for decades, it only relieves motor symptoms and has no effect on non-motor symptoms or disease progression. Prior studies have reported that 6-shogaol, the active ingredient in ginger, exerts a protective effect on dopaminergic neurons by suppressing neuroinflammation in PD mice. This study investigated whether cotreatment with 6-shogaol and L-dopa could attenuate both motor and non-motor symptoms and dopaminergic neuronal damage. Both 6-shogaol (20 mg/kg) and L-dopa (80 mg/kg) were orally administered to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/probenecid- induced PD model mice for 26 days. The experimental results showed that L-dopa alleviated motor symptoms, but had no significant effect on non-motor symptoms, loss of dopaminergic neuron, or neuroinflammation. However, when mice were treated with 6-shogaol alone or in combination L-dopa, an amelioration in both motor and non-motor symptoms such as depression-like behavior, olfactory dysfunction and memory impairment was observed. Moreover, 6-shogaol-only or co-treatment with 6-shogaol and L-dopa protected dopaminergic neurons in the striatum and reduced neuroinflammation in the striatum and substantia nigra. Overall, these results suggest that 6-shogaol can effectively complement L-dopa by improving non-motor dysfunction and restoring dopaminergic neurons via suppressing neuroinflammation.
Keywords: 6-shogaol; Dopaminergic neuron; Levodopa; Neuroinflammation; Non-motor symptom; Parkinson’s disease.
Figures
 
              
              
              
              
                
                
                 
              
              
              
              
                
                
                 
              
              
              
              
                
                
                 
              
              
              
              
                
                
                 
              
              
              
              
                
                
                 
              
              
              
              
                
                
                 
              
              
              
              
                
                
                References
- 
    - Choi Y., Huh E., Lee S., Kim J. H., Park M. G., Seo S. Y., Kim S. Y., Oh M. S. 5-Hydroxytryptophan reduces levodopa-induced dyskinesia via regulating AKT/mTOR/S6K and CREB/DeltaFosB signals in a mouse model of Parkinson's disease. Biomol. Ther. (Seoul) 2023;31:402–410. doi: 10.4062/biomolther.2022.141. - DOI - PMC - PubMed
 
LinkOut - more resources
- Full Text Sources
 
        