Permeable TAD boundaries and their impact on genome-associated functions
- PMID: 39093600
- DOI: 10.1002/bies.202400137
Permeable TAD boundaries and their impact on genome-associated functions
Abstract
TAD boundaries are genomic elements that separate biological processes in neighboring domains by blocking DNA loops that are formed through Cohesin-mediated loop extrusion. Most TAD boundaries consist of arrays of binding sites for the CTCF protein, whose interaction with the Cohesin complex blocks loop extrusion. TAD boundaries are not fully impermeable though and allow a limited amount of inter-TAD loop formation. Based on the reanalysis of Nano-C data, a multicontact Chromosome Conformation Capture assay, we propose a model whereby clustered CTCF binding sites promote the successive stalling of Cohesin and subsequent dissociation from the chromatin. A fraction of Cohesin nonetheless achieves boundary read-through. Due to a constant rate of Cohesin dissociation elsewhere in the genome, the maximum length of inter-TAD loops is restricted though. We speculate that the DNA-encoded organization of stalling sites regulates TAD boundary permeability and discuss implications for enhancer-promoter loop formation and other genomic processes.
Keywords: 3D genome organization; CTCF; Cohesin; Topologically Associating Domains; enhancer–promoter looping; gene regulation; loop extrusion.
© 2024 The Author(s). BioEssays published by Wiley Periodicals LLC.
Similar articles
-
Insulation between adjacent TADs is controlled by the width of their boundaries through distinct mechanisms.Proc Natl Acad Sci U S A. 2025 Mar 18;122(11):e2413112122. doi: 10.1073/pnas.2413112122. Epub 2025 Mar 10. Proc Natl Acad Sci U S A. 2025. PMID: 40063813
-
Pushing the TAD boundary: Decoding insulator codes of clustered CTCF sites in 3D genomes.Bioessays. 2024 Oct;46(10):e2400121. doi: 10.1002/bies.202400121. Epub 2024 Aug 21. Bioessays. 2024. PMID: 39169755 Review.
-
CTCF is a DNA-tension-dependent barrier to cohesin-mediated loop extrusion.Nature. 2023 Apr;616(7958):822-827. doi: 10.1038/s41586-023-05961-5. Epub 2023 Apr 19. Nature. 2023. PMID: 37076620 Free PMC article.
-
Computational prediction of CTCF/cohesin-based intra-TAD loops that insulate chromatin contacts and gene expression in mouse liver.Elife. 2018 May 14;7:e34077. doi: 10.7554/eLife.34077. Elife. 2018. PMID: 29757144 Free PMC article.
-
Genome folding by cohesin.Curr Opin Genet Dev. 2025 Apr;91:102310. doi: 10.1016/j.gde.2025.102310. Epub 2025 Jan 18. Curr Opin Genet Dev. 2025. PMID: 39827577 Review.
Cited by
-
The chromosome folding problem and how cells solve it.Cell. 2024 Nov 14;187(23):6424-6450. doi: 10.1016/j.cell.2024.10.026. Cell. 2024. PMID: 39547207 Free PMC article. Review.
-
Insulation between adjacent TADs is controlled by the width of their boundaries through distinct mechanisms.Proc Natl Acad Sci U S A. 2025 Mar 18;122(11):e2413112122. doi: 10.1073/pnas.2413112122. Epub 2025 Mar 10. Proc Natl Acad Sci U S A. 2025. PMID: 40063813
-
Genome structure mapping with high-resolution 3D genomics and deep learning.bioRxiv [Preprint]. 2025 May 7:2025.05.06.650874. doi: 10.1101/2025.05.06.650874. bioRxiv. 2025. PMID: 40654659 Free PMC article. Preprint.
References
REFERENCES
-
- Tolhuis, B., Palstra, R.‐J., Splinter, E., Grosveld, F., & De Laat, W. (2002). Looping and interaction between hypersensitive sites in the active beta‐globin locus. Molecular Cell, 10, 1453–1465.
-
- Sanyal, A., Lajoie, B. R., Jain, G., & Dekker, J. (2012). The long‐range interaction landscape of gene promoters. Nature, 489, 109–113.
-
- Shen, Y., Yue, F., Mccleary, D. F., Ye, Z., Edsall, L., Kuan, S., Wagner, U., Dixon, J., Lee, L., Lobanenkov, V. V., & Ren, B. (2012). A map of the cis‐regulatory sequences in the mouse genome. Nature, 488, 116–120.
-
- Long, H. K., Osterwalder, M., Welsh, I. C., Hansen, K., Davies, J. O. J., Liu, Y. E., Koska, M., Adams, A. T., Aho, R., Arora, N., Ikeda, K., Williams, R. M., Sauka‐Spengler, T., Porteus, M. H., Mohun, T., Dickel, D. E., Swigut, T., Hughes, J. R., Higgs, D. R., … Wysocka, J. (2020). Loss of extreme long‐range enhancers in human neural crest drives a craniofacial disorder. Cell Stem Cell, 27, 765–783.e14.
-
- Lobanenkov, V. V., Nicolas, R. H., Adler, V. V., Paterson, H., Klenova, E. M., Polotskaja, A. V., & Goodwin, G. H. (1990). A novel sequence‐specific DNA binding protein which interacts with three regularly spaced direct repeats of the CCCTC‐motif in the 5'‐flanking sequence of the chicken c‐myc gene. Oncogene, 5, 1743–1753.
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources