Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Sep:301:618-622.
doi: 10.1016/j.jss.2024.07.024. Epub 2024 Aug 1.

External Validation of Predictors of Mortality in Polytrauma Patients

Affiliations

External Validation of Predictors of Mortality in Polytrauma Patients

Ellen R Becker et al. J Surg Res. 2024 Sep.

Abstract

Introduction: The Parkland Trauma Index of Mortality (PTIM) is an integrated, machine learning 72-h mortality prediction model that automatically extracts and analyzes demographic, laboratory, and physiological data in polytrauma patients. We hypothesized that this validated model would perform equally as well at another level 1 trauma center.

Methods: A retrospective cohort study was performed including ∼5000 adult level 1 trauma activation patients from January 2022 to September 2023. Demographics, physiologic and laboratory values were collected. First, a test set of models using PTIM clinical variables (CVs) was used as external validation, named PTIM+. Then, multiple novel mortality prediction models were developed considering all CVs designated as the Cincinnati Trauma Index of Mortality (CTIM). The statistical performance of the models was then compared.

Results: PTIM CVs were found to have similar predictive performance within the PTIM + external validation model. The highest correlating CVs used in CTIM overlapped considerably with those of the PTIM, and performance was comparable between models. Specifically, for prediction of mortality within 48 h (CTIM versus PTIM): positive prediction value was 35.6% versus 32.5%, negative prediction value was 99.6% versus 99.3%, sensitivity was 81.0% versus 82.5%, specificity was 97.3% versus 93.6%, and area under the curve was 0.98 versus 0.94.

Conclusions: This external cohort study suggests that the variables initially identified via PTIM retain their predictive ability and are accessible in a different level 1 trauma center. This work shows that a trauma center may be able to operationalize an effective predictive model without undertaking a repeated time and resource intensive process of full variable selection.

Keywords: Machine learning; Mortality prediction; Polytrauma.

PubMed Disclaimer

Publication types

LinkOut - more resources