Mycoplasma pneumoniae-induced Kawasaki disease via PINK1/Parkin-mediated mitophagy
- PMID: 39094903
- DOI: 10.1016/j.yexcr.2024.114182
Mycoplasma pneumoniae-induced Kawasaki disease via PINK1/Parkin-mediated mitophagy
Abstract
Kawasaki disease (KD) is a systemic vasculitis with an unknown cause that primarily affects children. The objective of this study was to explore the function and underlying mechanism of mitophagy in Mycoplasma pneumoniae (MP)-induced KD. To create MP-induced KD models, Human coronary endothelial cells (HCAECs) and DBA/2 mice were employed and treated with Mp-Lipid-associated membrane proteins (LAMPs). Lactate dehydrogenase (LDH) levels were tested to determine cellular damage or death. The inflammatory cytokines tumor necrosis factor (TNF)--α and interleukin (IL)-6 were measured using the Enzyme-Linked Immunosorbent Assay (ELISA) method. RT-qPCR and Western blotting were used to determine the expression of Intercellular Adhesion Molecule(ICAM)-1, vascular cell adhesion molecule (VCAM)-1, inducible nitric oxide synthase(iNOS), LC3, p62, PINK1(a mitochondrial serine/threonine-protein kinase), and PARKIN(a cytosolic E3-ubiquitin ligase). The adenosine triphosphate (ATP), reactive oxygen species (ROS), and mitochondrial membrane potential(MMP) levels were measured to determine mitochondrial function. Mitophagy was investigated using immunofluorescence and a mitophagy detection test. Autophagosome and mitochondrial morphology were examined using transmission electron microscopy. To identify inflammatory cell infiltration, hematoxylin and eosin staining was utilized. Mp-LAMPs increased the levels of TNF-α, IL-6, ICAM-1, VCAM-1, and iNOS in an HCAEC cell model, along with LDH release. After Mp-LAMPs exposure, there was a rise in LC3 and a reduction in p62. Meanwhile, the expression of PINK1 and Parkin was increased. Cyclosporin A dramatically increased ATP synthesis and MMP in HCAEC cells treated with Mp-LAMPs, while suppressing ROS generation, demonstrating excessive mitophagy-related mitochondrial dysfunction. Additionally, neither body weight nor artery tissue were affected due to PINK1 and Parkin suppression Cyclosporin A in Mp-LAMPs-treated mice. These findings indicated that PINK1/Parkin-mediated mitophagy inhibition may be a therapeutic target for MP-induced KD.
Keywords: Kawasaki disease; Mitophagy; Mycoplasma pneumoniae; PINK1; Parkin.
Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.
Conflict of interest statement
Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
Miscellaneous