Decoding pathology: the role of computational pathology in research and diagnostics
- PMID: 39095655
- PMCID: PMC11958429
- DOI: 10.1007/s00424-024-03002-2
Decoding pathology: the role of computational pathology in research and diagnostics
Abstract
Traditional histopathology, characterized by manual quantifications and assessments, faces challenges such as low-throughput and inter-observer variability that hinder the introduction of precision medicine in pathology diagnostics and research. The advent of digital pathology allowed the introduction of computational pathology, a discipline that leverages computational methods, especially based on deep learning (DL) techniques, to analyze histopathology specimens. A growing body of research shows impressive performances of DL-based models in pathology for a multitude of tasks, such as mutation prediction, large-scale pathomics analyses, or prognosis prediction. New approaches integrate multimodal data sources and increasingly rely on multi-purpose foundation models. This review provides an introductory overview of advancements in computational pathology and discusses their implications for the future of histopathology in research and diagnostics.
Keywords: Classification; Deep learning; Digital pathology; Pathomics; Regression; Segmentation.
© 2024. The Author(s).
Conflict of interest statement
Declarations. Competing interests: The authors declare no competing interests.
Figures




Similar articles
-
Deep computational pathology in breast cancer.Semin Cancer Biol. 2021 Jul;72:226-237. doi: 10.1016/j.semcancer.2020.08.006. Epub 2020 Aug 17. Semin Cancer Biol. 2021. PMID: 32818626 Review.
-
Operational greenhouse-gas emissions of deep learning in digital pathology: a modelling study.Lancet Digit Health. 2024 Jan;6(1):e58-e69. doi: 10.1016/S2589-7500(23)00219-4. Epub 2023 Nov 22. Lancet Digit Health. 2024. PMID: 37996339 Free PMC article.
-
Developing a low-cost, open-source, locally manufactured workstation and computational pipeline for automated histopathology evaluation using deep learning.EBioMedicine. 2024 Sep;107:105276. doi: 10.1016/j.ebiom.2024.105276. Epub 2024 Aug 27. EBioMedicine. 2024. PMID: 39197222 Free PMC article.
-
Exploring and validating the prognostic value of pathomics signatures and genomics in patients with cutaneous melanoma based on bioinformatics and deep learning.Med Phys. 2023 Nov;50(11):7049-7059. doi: 10.1002/mp.16748. Epub 2023 Sep 18. Med Phys. 2023. PMID: 37722701
-
Harnessing Deep Learning for Omics in an Era of COVID-19.OMICS. 2023 Apr;27(4):141-152. doi: 10.1089/omi.2022.0155. OMICS. 2023. PMID: 37043378 Review.
Cited by
-
Special issue European Journal of Physiology: Artificial intelligence in the field of physiology and medicine.Pflugers Arch. 2025 Apr;477(4):509-512. doi: 10.1007/s00424-025-03071-x. Epub 2025 Mar 11. Pflugers Arch. 2025. PMID: 40067435 Free PMC article.
-
Advances in the use of Radiomics and Pathomics for predicting the efficacy of neoadjuvant therapy in tumors.Transl Oncol. 2025 Aug;58:102435. doi: 10.1016/j.tranon.2025.102435. Epub 2025 May 30. Transl Oncol. 2025. PMID: 40449473 Free PMC article. Review.
References
-
- Abels E, Pantanowitz L, Aeffner F, Zarella MD, van der Laak J, Bui MM, Vemuri VN, Parwani AV, Gibbs J, Agosto-Arroyo E, Beck AH, Kozlowski C (2019) Computational pathology definitions, best practices, and recommendations for regulatory guidance: a white paper from the Digital Pathology Association. J Pathol 249:286–294 - PMC - PubMed
-
- Ahlers J, Althviz Moré D, Amsalem O, Anderson A, Bokota G, Boone P, Bragantini J, Buckley G, Burt A, Bussonnier M, Can Solak A, Caporal C, Doncila Pop D, Evans K, Freeman J, Gaifas L, Gohlke C, Gunalan K, Har-Gil H, Harfouche M, Harrington KIS, Hilsenstein V, Hutchings K, Lambert T, Lauer J, Lichtner G, Liu Z, Liu L, Lowe A, Marconato L, Martin S, McGovern A, Migas L, Miller N, Muñoz H, Müller J-H, Nauroth-Kreß C, Nunez-Iglesias J, Pape C, Pevey K, Peña-Castellanos G, Pierré A, Rodríguez-Guerra J, Ross D, Royer L, Russell CT, Selzer G, Smith P, Sobolewski P, Sofiiuk K, Sofroniew N, Stansby D, Sweet A, Vierdag W-M, Wadhwa P, Weber Mendonça M, Windhager J, Winston P, Yamauchi K (2023) napari: a multi-dimensional image viewer for Python. Zenodo
-
- Amgad M, Hodge JM, Elsebaie MAT, Bodelon C, Puvanesarajah S, Gutman DA, Siziopikou KP, Goldstein JA, Gaudet MM, Teras LR, Cooper LAD (2023) A population-level digital histologic biomarker for enhanced prognosis of invasive breast cancer. Nat Med 1–13 - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources