Recent trends in AI applications for pelvic MRI: a comprehensive review
- PMID: 39096356
- DOI: 10.1007/s11547-024-01861-4
Recent trends in AI applications for pelvic MRI: a comprehensive review
Abstract
Magnetic resonance imaging (MRI) is an essential tool for evaluating pelvic disorders affecting the prostate, bladder, uterus, ovaries, and/or rectum. Since the diagnostic pathway of pelvic MRI can involve various complex procedures depending on the affected organ, the Reporting and Data System (RADS) is used to standardize image acquisition and interpretation. Artificial intelligence (AI), which encompasses machine learning and deep learning algorithms, has been integrated into both pelvic MRI and the RADS, particularly for prostate MRI. This review outlines recent developments in the use of AI in various stages of the pelvic MRI diagnostic pathway, including image acquisition, image reconstruction, organ and lesion segmentation, lesion detection and classification, and risk stratification, with special emphasis on recent trends in multi-center studies, which can help to improve the generalizability of AI.
Keywords: Artificial intelligence; Bladder; Magnetic resonance imaging; Ovary; Prostate; Rectum; Uterus.
© 2024. Italian Society of Medical Radiology.
Similar articles
-
Artificial Intelligence in Magnetic Resonance Imaging-based Prostate Cancer Diagnosis: Where Do We Stand in 2021?Eur Urol Focus. 2022 Mar;8(2):409-417. doi: 10.1016/j.euf.2021.03.020. Epub 2021 Mar 25. Eur Urol Focus. 2022. PMID: 33773964 Review.
-
Risk Stratification and Artificial Intelligence in Early Magnetic Resonance Imaging-based Detection of Prostate Cancer.Eur Urol Focus. 2022 Sep;8(5):1187-1191. doi: 10.1016/j.euf.2021.11.005. Epub 2021 Dec 23. Eur Urol Focus. 2022. PMID: 34922897
-
Tasks for artificial intelligence in prostate MRI.Eur Radiol Exp. 2022 Jul 31;6(1):33. doi: 10.1186/s41747-022-00287-9. Eur Radiol Exp. 2022. PMID: 35908102 Free PMC article. Review.
-
The role of AI in prostate MRI quality and interpretation: Opportunities and challenges.Eur J Radiol. 2023 Aug;165:110887. doi: 10.1016/j.ejrad.2023.110887. Epub 2023 May 23. Eur J Radiol. 2023. PMID: 37245342 Review.
-
Artificial Intelligence for Automated Cancer Detection on Prostate MRI: Opportunities and Ongoing Challenges, From the AJR Special Series on AI Applications.AJR Am J Roentgenol. 2022 Aug;219(2):188-194. doi: 10.2214/AJR.21.26917. Epub 2021 Dec 8. AJR Am J Roentgenol. 2022. PMID: 34877870 Review.
Cited by
-
Recent topics in musculoskeletal imaging focused on clinical applications of AI: How should radiologists approach and use AI?Radiol Med. 2025 May;130(5):587-597. doi: 10.1007/s11547-024-01947-z. Epub 2025 Feb 24. Radiol Med. 2025. PMID: 39992330 Review.
-
DWI of the rectum with deep learning reconstruction: comparison of PROPELLER, reduced FOV, and conventional DWI.Abdom Radiol (NY). 2025 Apr 17. doi: 10.1007/s00261-025-04950-8. Online ahead of print. Abdom Radiol (NY). 2025. PMID: 40244478
-
JJR-TOP GUN Phase 1, Year 2: new perspectives through the integration of artificial intelligence and radiology.Jpn J Radiol. 2025 Mar;43(3):331-332. doi: 10.1007/s11604-025-01737-1. Jpn J Radiol. 2025. PMID: 39862349 No abstract available.
-
Advancing clinical MRI exams with artificial intelligence: Japan's contributions and future prospects.Jpn J Radiol. 2025 Mar;43(3):355-364. doi: 10.1007/s11604-024-01689-y. Epub 2024 Nov 16. Jpn J Radiol. 2025. PMID: 39548049 Free PMC article. Review.
-
Feasibility/clinical utility of half-Fourier single-shot turbo spin echo imaging combined with deep learning reconstruction in gynecologic magnetic resonance imaging.Abdom Radiol (NY). 2025 Jul;50(7):3060-3068. doi: 10.1007/s00261-024-04739-1. Epub 2024 Dec 18. Abdom Radiol (NY). 2025. PMID: 39692759
References
-
- Turkbey B, Rosenkrantz AB, Haider MA et al (2019) Prostate imaging reporting and data system version 2.1: 2019 update of prostate imaging reporting and data system version 2. Eur Urol 76:340–351. https://doi.org/10.1016/j.eururo.2019.02.033 - DOI - PubMed
-
- Panebianco V, Narumi Y, Altun E et al (2018) Multiparametric magnetic resonance imaging for bladder cancer: development of VI-RADS (vesical imaging-reporting and data system). Eur Urol 74:294–306. https://doi.org/10.1016/j.eururo.2018.04.029 - DOI - PubMed - PMC
-
- Nougaret S, Horta M, Sala E et al (2019) Endometrial cancer MRI staging: updated guidelines of the european society of urogenital radiology. Eur Radiol 29:792–805. https://doi.org/10.1007/s00330-018-5515-y - DOI - PubMed
-
- Manganaro L, Lakhman Y, Bharwani N et al (2021) Staging, recurrence and follow-up of uterine cervical cancer using MRI: updated guidelines of the European society of urogenital radiology after revised FIGO staging 2018. Eur Radiol 31:7802–7816. https://doi.org/10.1007/s00330-020-07632-9 - DOI - PubMed
-
- Kubik-Huch RA, Weston M, Nougaret S et al (2018) European society of urogenital radiology (ESUR) guidelines: MR imaging of leiomyomas. Eur Radiol 28:3125–3137. https://doi.org/10.1007/s00330-017-5157-5 - DOI - PubMed - PMC
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Medical