Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Jul:108:1-411.
doi: 10.3114/sim.2024.108.01. Epub 2024 Jul 15.

What are the 100 most cited fungal genera?

C S Bhunjun  1   2 Y J Chen  2 C Phukhamsakda  2 T Boekhout  3   4 J Z Groenewald  3 E H C McKenzie  5 E C Francisco  3   6 J C Frisvad  7 M Groenewald  4 V G Hurdeal  1   2 J Luangsa-Ard  8 G Perrone  9 C M Visagie  10 F Y Bai  11   12 J Błaszkowski  13 U Braun  14 F A de Souza  15 M B de Queiroz  16 A K Dutta  17 D Gonkhom  1   2 B T Goto  16 V Guarnaccia  18 F Hagen  3   19 J Houbraken  3 M A Lachance  20 J J Li  21 K Y Luo  21 F Magurno  22 S Mongkolsamrit  8 V Robert  3 N Roy  17 S Tibpromma  23 D N Wanasinghe  24 D Q Wang  21 D P Wei  2   25   26 C L Zhao  21 W Aiphuk  2 O Ajayi-Oyetunde  27 T D Arantes  28 J C Araujo  29   30 D Begerow  31 M Bakhshi  32 R N Barbosa  33 F H Behrens  34 K Bensch  3 J D P Bezerra  28 P Bilański  35 C A Bradley  36 B Bubner  37 T I Burgess  38 B Buyck  39 N Čadež  40 L Cai  11 F J S Calaça  29   30   41 L J Campbell  42 P Chaverri  43   44 Y Y Chen  45 K W T Chethana  1   2 B Coetzee  46   47 M M Costa  3 Q Chen  11 F A Custódio  48 Y C Dai  49 U Damm  50 A L C M A Santiago  51 R M De Miccolis Angelini  52 J Dijksterhuis  3 A J Dissanayake  53 M Doilom  54 W Dong  54 E Álvarez-Duarte  55 M Fischer  34 A J Gajanayake  1   2 J Gené  56 D Gomdola  1   2   57 A A M Gomes  58 G Hausner  59 M Q He  11 L Hou  11   60 I Iturrieta-González  56   61 F Jami  62 R Jankowiak  35 R S Jayawardena  1   2   63 H Kandemir  3 L Kiss  64   65 N Kobmoo  8 T Kowalski  35 L Landi  66 C G Lin  2   53 J K Liu  53 X B Liu  67   26   68 M Loizides  69 T Luangharn  2 S S N Maharachchikumbura  53 G J Makhathini Mkhwanazi  46 I S Manawasinghe  54 Y Marin-Felix  70   71 A R McTaggart  72 P A Moreau  73 O V Morozova  74   75 L Mostert  46 H D Osiewacz  76 D Pem  1   2   57 R Phookamsak  24 S Pollastro  52 A Pordel  77 C Poyntner  78 A J L Phillips  79 M Phonemany  1   2   57 I Promputtha  80 A R Rathnayaka  1   2   57 A M Rodrigues  81 G Romanazzi  66 L Rothmann  82 C Salgado-Salazar  83 M Sandoval-Denis  3 S J Saupe  84 M Scholler  85 P Scott  38   86 R G Shivas  64 P Silar  87 A G S Silva-Filho  88 C M Souza-Motta  33 C F J Spies  89 A M Stchigel  56 K Sterflinger  90 R C Summerbell  91   92 T Y Svetasheva  75 S Takamatsu  93 B Theelen  3 R C Theodoro  94 M Thines  95 N Thongklang  1   2 R Torres  96 B Turchetti  97 T van den Brule  3   98 X W Wang  11 F Wartchow  99 S Welti  71 S N Wijesinghe  1   2   57 F Wu  49 R Xu  100   101 Z L Yang  27   68 N Yilmaz  10 A Yurkov  102 L Zhao  3 R L Zhao  11   12 N Zhou  103 K D Hyde  1   2   54   104 P W Crous  3   10   105
Affiliations

What are the 100 most cited fungal genera?

C S Bhunjun et al. Stud Mycol. 2024 Jul.

Abstract

The global diversity of fungi has been estimated between 2 to 11 million species, of which only about 155 000 have been named. Most fungi are invisible to the unaided eye, but they represent a major component of biodiversity on our planet, and play essential ecological roles, supporting life as we know it. Although approximately 20 000 fungal genera are presently recognised, the ecology of most remains undetermined. Despite all this diversity, the mycological community actively researches some fungal genera more commonly than others. This poses an interesting question: why have some fungal genera impacted mycology and related fields more than others? To address this issue, we conducted a bibliometric analysis to identify the top 100 most cited fungal genera. A thorough database search of the Web of Science, Google Scholar, and PubMed was performed to establish which genera are most cited. The most cited 10 genera are Saccharomyces, Candida, Aspergillus, Fusarium, Penicillium, Trichoderma, Botrytis, Pichia, Cryptococcus and Alternaria. Case studies are presented for the 100 most cited genera with general background, notes on their ecology and economic significance and important research advances. This paper provides a historic overview of scientific research of these genera and the prospect for further research. Citation: Bhunjun CS, Chen YJ, Phukhamsakda C, Boekhout T, Groenewald JZ, McKenzie EHC, Francisco EC, Frisvad JC, Groenewald M, Hurdeal VG, Luangsa-ard J, Perrone G, Visagie CM, Bai FY, Błaszkowski J, Braun U, de Souza FA, de Queiroz MB, Dutta AK, Gonkhom D, Goto BT, Guarnaccia V, Hagen F, Houbraken J, Lachance MA, Li JJ, Luo KY, Magurno F, Mongkolsamrit S, Robert V, Roy N, Tibpromma S, Wanasinghe DN, Wang DQ, Wei DP, Zhao CL, Aiphuk W, Ajayi-Oyetunde O, Arantes TD, Araujo JC, Begerow D, Bakhshi M, Barbosa RN, Behrens FH, Bensch K, Bezerra JDP, Bilański P, Bradley CA, Bubner B, Burgess TI, Buyck B, Čadež N, Cai L, Calaça FJS, Campbell LJ, Chaverri P, Chen YY, Chethana KWT, Coetzee B, Costa MM, Chen Q, Custódio FA, Dai YC, Damm U, de Azevedo Santiago ALCM, De Miccolis Angelini RM, Dijksterhuis J, Dissanayake AJ, Doilom M, Dong W, Alvarez-Duarte E, Fischer M, Gajanayake AJ, Gené J, Gomdola D, Gomes AAM, Hausner G, He MQ, Hou L, Iturrieta-González I, Jami F, Jankowiak R, Jayawardena RS, Kandemir H, Kiss L, Kobmoo N, Kowalski T, Landi L, Lin CG, Liu JK, Liu XB, Loizides M, Luangharn T, Maharachchikumbura SSN, Makhathini Mkhwanazi GJ, Manawasinghe IS, Marin-Felix Y, McTaggart AR, Moreau PA, Morozova OV, Mostert L, Osiewacz HD, Pem D, Phookamsak R, Pollastro S, Pordel A, Poyntner C, Phillips AJL, Phonemany M, Promputtha I, Rathnayaka AR, Rodrigues AM, Romanazzi G, Rothmann L, Salgado-Salazar C, Sandoval-Denis M, Saupe SJ, Scholler M, Scott P, Shivas RG, Silar P, Souza-Motta CM, Silva-Filho AGS, Spies CFJ, Stchigel AM, Sterflinger K, Summerbell RC, Svetasheva TY, Takamatsu S, Theelen B, Theodoro RC, Thines M, Thongklang N, Torres R, Turchetti B, van den Brule T, Wang XW, Wartchow F, Welti S, Wijesinghe SN, Wu F, Xu R, Yang ZL, Yilmaz N, Yurkov A, Zhao L, Zhao RL, Zhou N, Hyde KD, Crous PW (2024). What are the 100 most cited fungal genera? Studies in Mycology 108: 1-411. doi: 10.3114/sim.2024.108.01.

Keywords: Bibliometric analysis; Web of Science; fungi; highly-cited.

PubMed Disclaimer

Conflict of interest statement

The authors declare that there is no conflict of interest.

Figures

Fig. 1.
Fig. 1.
Phylogenetic relationships of the currently recognised Saccharomyces species inferred from the A. maximum likelihood of whole genome, B. neighbour joining tree of internal transcribed spacer (ITS) region of the rRNA gene, and C. neighbour joining tree of D1/D2 domain of the large subunit (LSU) of the rRNA gene sequences. The parents of the two hybrid species are marked in A. and the parent that donates only minor genome sequences is marked by a dashed line. GenBank accession numbers for the ITS and D1/D2 sequences of type strains are shown in parentheses.
Fig. 2.
Fig. 2.
Life cycle of S. cerevisiae. Saccharomyces cerevisiae usually grows in nature as a diploid microbe. Diploid cells (a/α) either reproduce asexually by budding (mitosis) or undergo meiosis and sporulation in response to nutrition depletion, resulting in the formation of tetrads with four ascospores each. Ascospores either undergo intratetrad mating to form a diploid cell or germinate to form haploid cells (a or α). A haploid cell either reproduces by budding or mates with a sibling (selfing) or non-sibling (outcrossing) haploid with an opposite mating type to form a diploid cell or undergoes haplo-selfing or autodiploidization through a process known as mating-type (MAT) switch to restore the diploid phase.
Fig. 3.
Fig. 3.
Trends in research of Saccharomyces in the period 2011–2021. The figure shows citations for only 10 000 records.
Fig. 4.
Fig. 4.
Network visualisation of keywords of the publications related to Saccharomyces. The larger the text and the circle the more often the subject has been cited.
Fig. 5.
Fig. 5.
Trends in research of Candida in the period 2011–2021. The figure shows citations for only 10 000 records.
Fig. 6.
Fig. 6.
Network visualisation of keywords of the publications related to Candida. The larger the text and the circle the more often the subject has been cited.
Fig. 7.
Fig. 7.
Trends in research of Aspergillus in the period 2011–2021. The figure shows citations for only 10 000 records.
Fig. 8.
Fig. 8.
Network visualisation of keywords of the publications related to Aspergillus. The larger the text and the circle the more often the subject has been cited.
Fig. 9.
Fig. 9.
Trends in research of Fusarium in the period 2011–2021. The figure shows citations for only 10 000 records.
Fig. 10.
Fig. 10.
Network visualisation of keywords of the publications related to Fusarium. The larger the text and the circle the more often the subject has been cited.
Fig. 11.
Fig. 11.
Trends in research of Penicillium in the period 2011–2021.
Fig. 12.
Fig. 12.
Network visualisation of keywords of the publications related to Penicillium. The larger the text and the circle the more often the subject has been cited.
Fig. 13.
Fig. 13.
Trends in research of Trichoderma in the period 2011–2021.
Fig. 14.
Fig. 14.
Network visualisation of keywords of the publications related to Trichoderma. The larger the text and the circle the more often the subject has been cited.
Fig. 15.
Fig. 15.
Trends in research of Botrytis in the period 2011–2021.
Fig. 16.
Fig. 16.
Network visualisation of keywords of the publications related to Botrytis. The larger the text and the circle the more often the subject has been cited.
Fig. 17.
Fig. 17.
Trends in research of Pichia in the period 2011–2021.
Fig. 18.
Fig. 18.
Network visualisation of keywords of the publications related to Pichia. The larger the text and the circle the more often the subject has been cited.
Fig. 19.
Fig. 19.
Trends in research of Cryptococcus in the period 2011–2021.
Fig. 20.
Fig. 20.
Network visualisation of keywords of the publications related to Cryptococcus. The larger the text and the circle the more often the subject has been cited.
Fig. 21.
Fig. 21.
Trends in research of Alternaria in the period 2011–2021.
Fig. 22.
Fig. 22.
Network visualisation of keywords of the publications related to Alternaria. The larger the text and the circle the more often the subject has been cited.
Fig. 23.
Fig. 23.
Trends in research of Phytophthora in the period 2011–2021.
Fig. 24.
Fig. 24.
Network visualisation of keywords of the publications related to Phytophthora. The larger the text and the circle the more often the subject has been cited.
Fig. 25.
Fig. 25.
Trends in research of Rhizopus in the period 2011–2021.
Fig. 26.
Fig. 26.
Network visualisation of keywords of the publications related to Rhizopus. The larger the text and the circle the more often the subject has been cited.
Fig. 27.
Fig. 27.
Trends in research of Phanerochaete in the period 2011–2021.
Fig. 28.
Fig. 28.
Network visualisation of keywords of the publications related to Phanerochaete. The larger the text and the circle the more often the subject has been cited.
Fig. 29.
Fig. 29.
Trends in research of Colletotrichum in the period 2011–2021.
Fig. 30.
Fig. 30.
Network visualisation of keywords of the publications related to Colletotrichum. The larger the text and the circle the more often the subject has been cited.
Fig. 31.
Fig. 31.
Trends in research of Trametes in the period 2011–2021.
Fig. 32.
Fig. 32.
Network visualisation of keywords of the publications related to Trametes. The larger the text and the circle the more often the subject has been cited.
Fig. 33.
Fig. 33.
Trends in research of Rhizoctonia in the period 2011–2021.
Fig. 34.
Fig. 34.
Network visualisation of keywords of the publications related to Rhizoctonia. The larger the text and the circle the more often the subject has been cited.
Fig. 35.
Fig. 35.
Trends in research of Pleurotus in the period 2011–2021.
Fig. 36.
Fig. 36.
Network visualisation of keywords of the publications related to Pleurotus. The larger the text and the circle the more often the subject has been cited.
Fig. 37.
Fig. 37.
Trends in research of Ganoderma in the period 2011–2021.
Fig. 38.
Fig. 38.
Network visualisation of keywords of the publications related to Ganoderma. The larger the text and the circle the more often the subject has been cited.
Fig. 39.
Fig. 39.
Trends in research of Neurospora in the period 2011–2021.
Fig. 40.
Fig. 40.
Network visualisation of keywords of the publications related to Neurospora. The larger the text and the circle the more often the subject has been cited.
Fig. 41.
Fig. 41.
Trends in research of Cladosporium in the period 2011–2021.
Fig. 42.
Fig. 42.
Network visualisation of keywords of the publications related to Cladosporium. The larger the text and the circle the more often the subject has been cited.
Fig. 43.
Fig. 43.
Trends in research of Yarrowia in the period 2011–2021.
Fig. 44.
Fig. 44.
Network visualisation of keywords of the publications related to Yarrowia. The larger the text and the circle the more often the subject has been cited.
Fig. 45.
Fig. 45.
Trends in research of Agaricus in the period 2011–2021.
Fig. 46.
Fig. 46.
Network visualisation of keywords of the publications related to Agaricus. The larger the text and the circle the more often the subject has been cited.
Fig. 47.
Fig. 47.
Trends in research of Kluyveromyces in the period 2011–2021.
Fig. 48.
Fig. 48.
Network visualisation of keywords of the publications related to Kluyveromyces. The larger the text and the circle the more often the subject has been cited.
Fig. 49.
Fig. 49.
Trends in research of Mucor in the period 2011–2021.
Fig. 50.
Fig. 50.
Network visualisation of keywords of the publications related to Mucor. The larger the text and the circle the more often the subject has been cited.
Fig. 51.
Fig. 51.
Trends in research of Verticillium in the period 2011–2021.
Fig. 52.
Fig. 52.
Network visualisation of keywords of the publications related to Verticillium. The larger the text and the circle the more often the subject has been cited.
Fig. 53.
Fig. 53.
Trends in research of Sclerotinia in the period 2011–2021.
Fig. 54.
Fig. 54.
Trends in research of Rhodotorula in the period 2011–2021.
Fig. 55.
Fig. 55.
Trends in research of Beauveria in the period 2011–2021.
Fig. 56.
Fig. 56.
Bubble plot of 3 214 species of Puccinia based on the telial host family. Bubbles are coloured by host at order rank, and size is proportional to the biodiversity of described rust fungi.
Fig. 57.
Fig. 57.
Trends in research of Puccinia in the period 2011–2021.
Fig. 58.
Fig. 58.
Trends in research of Cordyceps in the period 2011–2021.
Fig. 59.
Fig. 59.
Trends in research of Trichophyton in the period 2011–2021.
Fig. 60.
Fig. 60.
Trends in research of Metarhizium in the period 2011–2021.
Fig. 61.
Fig. 61.
Trends in research of Pythium in the period 2011–2021.
Fig. 62.
Fig. 62.
Trends in research of Funneliformis in the period 2011–2021.
Fig. 63.
Fig. 63.
Trends in research of Ustilago in the period 2011–2021.
Fig. 64.
Fig. 64.
Trends in research of Rhizoglomus in the period 2011–2021.
Fig. 65.
Fig. 65.
Trends in research of Acremonium in the period 2011–2021.
Fig. 66.
Fig. 66.
Trends in research of Chaetomium in the period 2011–2021.
Fig. 67.
Fig. 67.
Sexual reproduction of Paec. variotii ( Van den Brule 2022). A. Two strains with compatible mating types, DTO 217-A2 and DTO 212-C5 (grown for 6 wk on potato dextrose agar at 30 °C). B. Magnification of the area between the two strains by stereo microscopy. Asci form between the colonies resulting in typically white ascomata. C. Light microscopy of asci, each containing 8 ascospores. D. Cryo-SEM image of grouped asci. E. Cryo-SEM image of ascogenous cell (1) forming young asci; (2) the membrane of the asci shrinks when asci mature, revealing its individual ascospores (3). Scale bars: C = 10 μm; D = 100 μm; E = 5 μm.
Fig. 68.
Fig. 68.
Trends in research of Paecilomyces in the period 2011–2021.
Fig. 69.
Fig. 69.
Trends in research of Trichosporon and related trichosporonoid yeasts in the period 2011–2021.
Fig. 70.
Fig. 70.
Trends in research of Malassezia in the period 2011–2021.
Fig. 71.
Fig. 71.
Trends in research of Phoma in the period 2011–2021.
Fig. 72.
Fig. 72.
Trends in research of Thermomyces between 2011–2021.
Fig. 73.
Fig. 73.
Trends in research of Lentinus between 2011–2021.
Fig. 74.
Fig. 74.
Trends in research of Mortierella in the period 2011–2021.
Fig. 75.
Fig. 75.
Trends in research of Debaryomyces in the period 2011–2021.
Fig. 76
Fig. 76
Trends in research of Metschnikowia in the period 2011–2021.
Fig. 77
Fig. 77
Trends in research of Talaromyces in the period 2011–2021.
Fig. 78
Fig. 78
Trends in research of Geotrichum in the period 2011–2021.
Fig. 79
Fig. 79
Trends in research of Pestalotiopsis in the period 2011–2021.
Fig. 80
Fig. 80
Trends in research of Microsporum in the period 2011–2021.
Fig. 81
Fig. 81
Trends in research of Curvularia in the period 2011–2021.
Fig. 82
Fig. 82
Trends in research of Rhizomucor in the period 2011–2021.
Fig. 83
Fig. 83
Trends in research of Pyricularia in the period 2011–2021.
Fig. 84
Fig. 84
Trends in research of Parastagonospora in the period 2011–2021.
Fig. 85
Fig. 85
Trends in research of Monascus in the period 2011–2021.
Fig. 86
Fig. 86
Trends in research of Hanseniaspora in the period 2011–2021.
Fig. 87
Fig. 87
Trends in research of Paracoccidioides in the period 2011–2021.
Fig. 88
Fig. 88
Trends in research of Schizophyllum in the period 2011–2021.
Fig. 89
Fig. 89
Trends in research of Plasmopara in the period 2011–2021.
Fig. 90
Fig. 90
Trends in research of Auricularia in the period 2011–2021.
Fig. 91
Fig. 91
Trends in research of Russula in the period 2011–2021.
Fig. 92
Fig. 92
Trends in research of Zygosaccharomyces in the period 2011–2021.
Fig. 93
Fig. 93
Trends in research of Torulaspora in the period 2011–2021.
Fig. 94
Fig. 94
Trends in research of Boletus in the period 2011–2021.
Fig. 95
Fig. 95
Trends in research of Botryosphaeria in the period 2011–2021.
Fig. 96
Fig. 96
Trends in research of Cunninghamella in the period 2011–2021.
Fig. 97
Fig. 97
Trends in research of Diaporthe in the period 2011–2021.
Fig. 98
Fig. 98
Trends in research of Bipolaris in the period 2011–2021.
Fig. 99
Fig. 99
Cultivated Lentinula edodes on a farm in China.
Fig. 100.
Fig. 100.
Trends in research of Lentinula in the period 2011–2021.
Fig. 101.
Fig. 101.
Trends in research of Erysiphe in the period 2011–2021.
Fig. 102.
Fig. 102.
Trends in research of Scedosporium in the period 2011–2021.
Fig. 103.
Fig. 103.
Trends in research of Zymoseptoria in the period 2011–2021.
Fig. 104.
Fig. 104.
Trends in research of Phellinus in the period 2011–2021.
Fig. 105.
Fig. 105.
Trends in research of Sporothrix in the period 2011–2021.
Fig. 106.
Fig. 106.
Trends in research of Macrophomina in the period 2011–2021.
Fig. 107.
Fig. 107.
Trends in research of Flammulina in the period 2011–2021.
Fig. 108.
Fig. 108.
Trends in research of Pseudogymnoascus in the period 2011–2021.
Fig. 109.
Fig. 109.
Trends in research of Podospora in the period 2011–2021.
Fig. 110.
Fig. 110.
Trends in research of Amanita in the period 2011–2021.
Fig. 111.
Fig. 111.
Trends in research of Cercospora in the period 2011–2021.
Fig. 112.
Fig. 112.
Trends in research of Lactarius in the period 2011–2021.
Fig. 113.
Fig. 113.
Trends in research of Lasiodiplodia in the period 2011–2021.
Fig. 114.
Fig. 114.
Trends in research of Exophiala in the period 2011–2021.
Fig. 115.
Fig. 115.
Trends in research of Monilinia in the period 2011–2021.
Fig. 116.
Fig. 116.
Trends in research of Coccidioides in the period 2011–2021.
None
Fig. 117. A. Melampsora abietis-caprearum: orange uredinia on leaves of Salix caprea. B. Melampsora amydalinae: orange uredinia on leaves of Salix triandra. C. Melampsora galanthi-fragilis with central spermogonia surrounded by aecia on leaves of Galanthus nivalis. D. Melampsora magnusiana: hypophyllous orange uredinia causing characteristic yellow epiphyllous leaf spots on Populus alba. E. Melampsora euphorbiae: orange uredinia and black crusty telia on Euphorbia carniolica. F. Melampsora gelmii: uredinia with urediniospores and thick-walled paraphyses on leaves of Euphorbia dendroides. G. Melampsora gelmii: telium crust with fused teliospores on Euphorbia dendroides [pictures contributed by M. Scholler (Fig. 117A, B, D–G) and J. Kruse (Fig. C)].
Fig. 118.
Fig. 118.
Trends in research of Melampsora in the period 2011–2021.
Fig. 119.
Fig. 119.
Trends in research of Antrodia in the period 2011–2021.
Fig. 120.
Fig. 120.
Trends in research of Brettanomyces in the period 2011–2021.
Fig. 121.
Fig. 121.
Trends in research of Ascochyta in the period 2011–2021.
Fig. 122.
Fig. 122.
Trends in research of Epichloe between 2011–2021.
Fig. 123.
Fig. 123.
Trends in research of Pyrenophora in the period 2011–2021.
Fig. 124.
Fig. 124.
Trends in research of Hymenoscyphus in the period 2011–2021.
Fig. 125.
Fig. 125.
Trends in research of Diplodia in the period 2011–2021.
Fig. 126.
Fig. 126.
Trends in research of Inonotus in the period 2011–2021.
Fig. 127.
Fig. 127.
Trends in research of Ophiostoma in the period 2011–2021.
Fig. 128.
Fig. 128.
Trends in research of Neofusicoccum in the period 2011–2021.
Fig. 129.
Fig. 129.
Trends in research of Hericium in the period 2011–2021.
Fig. 130.
Fig. 130.
Trends in research of Phakopsora between 2011–2021.
Fig. 131.
Fig. 131.
Trends in research of Leptosphaeria in the period 2011–2021.
Fig. 132.
Fig. 132.
Network visualisation of keywords of the publications related to all the 100 most cited genera. The larger the text and the circle the more often the subject has been cited.

References

    1. Aas T, Solheim H, Jankowiak R. et al. 2018. Four new Ophiostoma species associated with hardwood-infesting bark beetles in Norway and Poland. Fungal Biology 122: 1142–1158. - PubMed
    1. Abad ZG, Abad JA, Cacciola SO. et al. 2014. Phytophthora niederhauserii sp. nov., a polyphagous species associated with ornamentals, fruit trees and native plants in 13 countries. Mycologia 106: 431–447. - PubMed
    1. Abad ZG, Burgess TI, Bourret T. et al. 2023a. Phytophthora: taxonomic and phylogenetic revision of the genus. Studies in Mycology 106: 259–348. - PMC - PubMed
    1. Abad ZG, Burgess TI, Redford AJ. et al. 2023b. IDphy: An international online resource for molecular and morphological identification of Phytophthora. Plant Disease 107: 987–998. - PubMed
    1. Abadio AK, Kioshima ES, Teixeira MM. et al. 2011. Comparative genomics allowed the identification of drug targets against human fungal pathogens. BMC Genomics 12: 75. - PMC - PubMed

LinkOut - more resources