Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1985 Dec 3;24(25):7320-8.
doi: 10.1021/bi00346a045.

Purification of nuclear and mitochondrial uracil-DNA glycosylase from rat liver. Identification of two distinct subcellular forms

Purification of nuclear and mitochondrial uracil-DNA glycosylase from rat liver. Identification of two distinct subcellular forms

J D Domena et al. Biochemistry. .

Abstract

Rat liver uracil-DNA glycosylase has been purified from nuclear extracts over 3000-fold to apparent homogeneity as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The enzyme is a monomeric protein with a polypeptide molecular weight of approximately 35 000. It has a native molecular weight of 33 000 as determined by gel filtration chromatography and a sedimentation coefficient of 2.6 S in glycerol gradients. The nuclear enzyme has an alkaline pH optimum and a pI value of 9.3. Nuclear uracil-DNA glycosylase catalyzes the release of free uracil from both single-stranded and double-stranded DNA with the former being the preferred substrate. The enzyme is unable to recognize dUTP, dUMP, or poly(dA-dT) containing a 3'-terminal uracil residue as a substrate. However, internalization of terminal uracil residues by limited chain elongation produced a substrate for the glycosylase. Another species of uracil-DNA glycosylase has been partially purified from mitochondria. This activity differs from the nuclear enzyme in that it has (i) distinctive chromatographic properties, (ii) a lower native molecular weight of 20 000 as determined by molecular sieving, (iii) a distinct NaCl inhibition profile, and (iv) a longer half-life during thermal denaturation.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources