Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Nov 10:950:175267.
doi: 10.1016/j.scitotenv.2024.175267. Epub 2024 Aug 3.

Towards sustainable water management for Galdieria sulphuraria cultivation

Affiliations
Free article

Towards sustainable water management for Galdieria sulphuraria cultivation

M Carone et al. Sci Total Environ. .
Free article

Abstract

The red microalga Galdieria sulphuraria has emerged as a promising biotechnological platform for large-scale cultivation and production of high-value compounds, such as the blue pigment phycocyanin. However, a large amount of freshwater and a substantial supply of nutrients challenge both the environmental and the economic sustainability of algal cultivation. Additionally, the extremophilic nature of Galdieria sulphuraria requires cultivation in an acidic culture medium that directly leads to strongly acidic wastewater, which in turn generally exceeds legal limits for industrial wastewater discharge. This research aims to address these challenges, by investigating cultivation water reuse as a strategy to reduce the impacts of Galdieria sulphuraria management. The results indicated that a 25 % water reuse may be easily implemented and showed to be effective at the pilot scale, providing no significant changes in microalgae growth (biomass productivity ~0.21 g L-1 d-1) or in phycocyanin accumulation (~ 10.8 % w/w) after three consecutive cultivation cycles in reused water. Moreover, a single cultivation cycle with water reuse percentages of 71 and 98 %, achieved with membrane filtration and with centrifugation, respectively, was also successful (biomass productivity ~0.24 g L-1 d-1). These findings encourage freshwater reuse implementations in the microalgae sector and support further investigations focusing on coupling cultivation and harvesting in continuous, real-scale configurations. Centrifugation and membrane filtration required substantially different specific electrical energy consumption for water reuse and biomass concentration: in real applications, the former technique would roughly span from 1 to 10 kWh m-3 while the latter is expected to fall within the ample range 0.1-100 kWh m-3, strongly dependent on system size. For this reason, the most suitable separation train should be chosen on a case-by-case basis, considering the prevailing flow rate and the target biomass concentration factor targeted by the separation process.

Keywords: Centrifugation; Galdieria sulphuraria; Membrane microfiltration; Water reuse.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: Vincenzo A. Riggio reports financial support was provided by Polytechnic University of Turin. Mariachiara Zanetti reports financial support was provided by Polytechnic University of Turin. If there are other authors, they declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

LinkOut - more resources