Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Aug 20;18(33):22431-22443.
doi: 10.1021/acsnano.4c07265. Epub 2024 Aug 5.

Polyaptamer-Driven Crystallization of Alendronate for Synergistic Osteoporosis Treatment through Osteoclastic Inhibition and Osteogenic Promotion

Affiliations

Polyaptamer-Driven Crystallization of Alendronate for Synergistic Osteoporosis Treatment through Osteoclastic Inhibition and Osteogenic Promotion

Xingsen Yang et al. ACS Nano. .

Abstract

Osteoclastic inhibition using antiresorptive bisphosphonates and osteogenic promotion using antisclerostin agents represent two distinct osteoporosis treatments in clinical practice, each individual treatment suffers from unsatisfactory therapeutic efficacy due to its indirect intervention in osteoclasis and promotion of osteogenesis simultaneously. Although this issue is anticipated to be resolved by drug synergism, a tempting carrier-free dual-medication nanoassembly remains elusive. Herein, we prepare such a nanoassembly made of antiresorptive alendronate (ALN) crystal and antisclerostin polyaptamer (Apt) via a nucleic acid-driven crystallization method. This nanoparticle can protect Apt from rapid nuclease degradation, avoid the high cytotoxicity of free ALN, and effectively concentrate in the cancellous bone by virtue of the bone-binding ability of DNA and ALN. More importantly, the acid microenvironment of cancellous bone triggers the disassociation of nanoparticles for sustained drug release, from which ALN inhibits the osteoclast-mediated bone resorption while Apt promotes osteogenic differentiation. Our work represents a pioneering demonstration of nucleic acid-driven crystallization of a bisphosphonate into a tempting carrier-free dual-medication nanoassembly. This inaugural advancement augments the antiosteoporosis efficacy through direct inhibition of osteoclasis and promotion of osteogenesis simultaneously and establishes a paradigm for profound understanding of the underlying synergistic antiosteoporosis mechanism of antiresorptive and antisclerostin components. It is envisioned that this study provides a highly generalizable strategy applicable to the tailoring of a diverse array of DNA-inorganic nanocomposites for targeted regulation of intricate pathological niches.

Keywords: alendronate; osteoclastic inhibition; osteogenic promotion; osteoporosis; polyaptamer.

PubMed Disclaimer

References

Publication types

LinkOut - more resources