Insights from explainable AI in oesophageal cancer team decisions
- PMID: 39106674
- DOI: 10.1016/j.compbiomed.2024.108978
Insights from explainable AI in oesophageal cancer team decisions
Abstract
Background: Clinician-led quality control into oncological decision-making is crucial for optimising patient care. Explainable artificial intelligence (XAI) techniques provide data-driven approaches to unravel how clinical variables influence this decision-making. We applied global XAI techniques to examine the impact of key clinical decision-drivers when mapped by a machine learning (ML) model, on the likelihood of receiving different oesophageal cancer (OC) treatment modalities by the multidisciplinary team (MDT).
Methods: Retrospective analysis of 893 OC patients managed between 2010 and 2022 at our tertiary unit, used a random forests (RF) classifier to predict four possible treatment pathways as determined by the MDT: neoadjuvant chemotherapy followed by surgery (NACT + S), neoadjuvant chemoradiotherapy followed by surgery (NACRT + S), surgery-alone, and palliative management. Variable importance and partial dependence (PD) analyses then examined the influence of targeted high-ranking clinical variables within the ML model on treatment decisions as a surrogate model of the MDT decision-making dynamic.
Results: Amongst guideline-variables known to determine treatments, such as Tumour-Node-Metastasis (TNM) staging, age also proved highly important to the RF model (16.1 % of total importance) on variable importance analysis. PD subsequently revealed that predicted probabilities for all treatment modalities change significantly after 75 years (p < 0.001). Likelihood of surgery-alone and palliative therapies increased for patients aged 75-85yrs but lowered for NACT/NACRT. Performance status divided patients into two clusters which influenced all predicted outcomes in conjunction with age.
Conclusion: XAI techniques delineate the relationship between clinical factors and OC treatment decisions. These techniques identify advanced age as heavily influencing decisions based on our model with a greater role in patients with specific tumour characteristics. This study methodology provides the means for exploring conscious/subconscious bias and interrogating inconsistencies in team-based decision-making within the era of AI-driven decision support.
Keywords: Decision-making; Machine learning; Multidisciplinary teams; Oesophageal cancer.
Copyright © 2024 The Authors. Published by Elsevier Ltd.. All rights reserved.
Conflict of interest statement
Declaration of competing interest . All authors declare that they have no potential conflicts of interest.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Medical
