Quantitative Computed Tomography Angiography for the Evaluation of Valvular Fibrocalcific Volume in Aortic Stenosis
- PMID: 39115499
- DOI: 10.1016/j.jcmg.2024.06.007
Quantitative Computed Tomography Angiography for the Evaluation of Valvular Fibrocalcific Volume in Aortic Stenosis
Abstract
Background: Aortic stenosis (AS) is characterized by calcification and fibrosis. The ability to quantify these processes simultaneously has been limited with previous imaging methods.
Objectives: The purpose of this study was to evaluate the aortic valve fibrocalcific volume by computed tomography (CT) angiography in patients with AS, in particular, to assess its reproducibility, association with histology and disease severity, and ability to predict/track progression.
Methods: In 136 patients with AS, fibrocalcific volume was calculated on CT angiograms at baseline and after 1 year. CT attenuation distributions were analyzed using Gaussian-mixture-modeling to derive thresholds for tissue types enabling the quantification of calcific, noncalcific, and fibrocalcific volumes. Scan-rescan reproducibility was assessed and validation provided against histology and in an external cohort.
Results: Fibrocalcific volume measurements took 5.8 ± 1.0 min/scan, demonstrating good correlation with ex vivo valve weight (r = 0.51; P < 0.001) and excellent scan-rescan reproducibility (mean difference -1%, limits of agreement -4.5% to 2.8%). Baseline fibrocalcific volumes correlated with mean gradient on echocardiography in both male and female participants (rho = 0.64 and 0.69, respectively; both P < 0.001) and in the external validation cohort (n = 66, rho = 0.58; P < 0.001). The relationship was driven principally by calcific volume in men and fibrotic volume in women. After 1 year, fibrocalcific volume increased by 17% and correlated with progression in mean gradient (rho = 0.32; P = 0.003). Baseline fibrocalcific volume was the strongest predictor of subsequent mean gradient progression, with a particularly strong association in female patients (rho = 0.75; P < 0.001).
Conclusions: The aortic valve fibrocalcific volume provides an anatomic assessment of AS severity that can track disease progression precisely. It correlates with disease severity and hemodynamic progression in both male and female patients.
Keywords: aortic valve stenosis; contrast enhanced CT; fibrocalcific volume; gaussian mixture model.
Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.
Conflict of interest statement
Funding Support and Author Disclosures The SALTIRE 2 trial was funded by the British Heart Foundation (FS/14/78/31020). This work was partially supported by a grant from the Korea Health Technology R and D Project through the Korea Health Industry Development Institute, funded by the Ministry of Health and Welfare, Republic of Korea (grant number HI22C0154 to Dr Lee). Dr Joshi has received funding from the British Heart Foundation through a Clinical Research Training Fellowship and Research Excellence Award (FS/CRTF/20/24087 and RE/18/5/34216). Dr Williams is supported by the British Heart Foundation (FS/ICRF/20/26002); and has given talks for Canon Medical Systems, Siemens Healthineers and Novartis. Dr Newby is supported by the British Heart Foundation (CH/09/002, RG/20/10/34966, RE/18/5/34216, CH/F/21/90010); and is the recipient of a Wellcome Trust Senior Investigator Award (WT103782AIA). Dr Dweck is supported by the British Heart Foundation (FS/SCRF/21/32010); is the recipient of the Sir Jules Thorn Award for Biomedical Research 2015 (15/JTA); has received speaker fees from Pfizer, Radcliffe Cardiology, Bristol Myers Squibb, Edwards, and Novartis; has received consultancy fees from Novartis, Jupiter Bioventures, Beren, and Silence therapeutics; and is Director of the Imaging Corelab at the University of Edinburgh. All other authors have reported that they have no relationships relevant to the contents of this paper to disclose.
Publication types
MeSH terms
Supplementary concepts
Grants and funding
LinkOut - more resources
Full Text Sources
Research Materials
