Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2025 Feb;47(1):45-57.
doi: 10.1111/ics.13013. Epub 2024 Aug 11.

Cosmetic retinoid use in photoaged skin: A review of the compounds, their use and mechanisms of action

Affiliations
Review

Cosmetic retinoid use in photoaged skin: A review of the compounds, their use and mechanisms of action

Bezaleel Mambwe et al. Int J Cosmet Sci. 2025 Feb.

Abstract

The inevitable attrition of skin due to ultraviolet radiation, termed photoaging, can be partially restored by treatment with retinoid compounds. Photoaged skin in lightly pigmented individuals, clinically presents with the appearance of wrinkles, increased laxity, and hyper- and hypopigmentation. Underlying these visible signs of ageing are histological features such as epidermal thinning, dermal-epidermal junction flattening, solar elastosis and loss of the dermal fibrillin microfibrillar network, fibrillar collagen and glycosaminoglycans. Retinoid compounds are comprised of three main generations with the first generation (all-trans retinoic acid, retinol, retinaldehyde and retinyl esters) primarily used for the clinical and cosmetic treatment of photoaging, with varying degrees of efficacy, tolerance and stability. All-trans retinoic acid is considered the 'gold standard' for skin rejuvenation; however, it is a prescription-only product largely confined to clinical use. Therefore, retinoid derivatives are readily incorporated into cosmeceutical formulations. The literature reported in this review suggests that retinol, retinyl esters and retinaldehyde that are used in many cosmeceutical products, are efficacious, safe and well-tolerated. Once in the skin, retinoids utilize a complex signalling pathway that promotes remodelling of photoaged epidermis and dermis and leads to the improvement of the cutaneous signs of photoaging.

L'altération inévitable de la peau due aux rayons ultraviolets, appelée photovieillissement, peut être partiellement restaurée par un traitement à base de composés rétinoïdes. Chez les personnes à la pigmentation claire, le photovieillissement de la peau se manifeste au plan clinique par l'apparition de rides, un relâchement accru et une hyperpigmentation ou hypopigmentation. Ces signes visibles du vieillissement sont sous‐tendus par des caractéristiques histologiques telles que l'amincissement de l'épiderme, l'aplatissement de la jonction dermo‐épidermique, l'élastose solaire et la perte du réseau microfibrillaire de fibrilline dermique, du collagène fibrillaire et des glycosaminoglycanes. Les composés rétinoïdes sont constitués de trois générations principales, la première génération (acide tout‐trans rétinoïque, rétinol, rétinaldéhyde et esters de rétinyle) étant principalement utilisée pour le traitement clinique et cosmétique du photovieillissement, avec des degrés variables d'efficacité, de tolérance et de stabilité. L'acide tout‐trans rétinoïque est considéré comme la référence en matière de rajeunissement de la peau; il s'agit toutefois d'un produit délivré uniquement sur ordonnance, dont l’utilisation est largement limitée au domaine clinique. Les dérivés rétinoïdes sont donc volontiers incorporés ds formulations cosméceutiques. La littérature citée dans cette synthèse bibliographique laisse penser que le rétinol, les esters de rétinyle et le rétinaldéhyde, utilisés dans de nombreux produits cosmétiques, sont efficaces, sûrs et bien tolérés. Une fois dans la peau, les rétinoïdes utilisent une voie de signalisation complexe qui favorise le remodelage de l'épiderme et du derme photovieillis, et conduit à l'amélioration des signes cutanés du photovieillissement.

Keywords: cosmeceuticals; formulation/stability; skin barrier; skin physiology/structure; topical retinoids.

PubMed Disclaimer

Conflict of interest statement

The authors declare no known conflicts of interest.

Figures

FIGURE 1
FIGURE 1
Characteristics of photo‐protected and photoaged skin. Histologically, young photo‐protected skin (a) has a thick epidermis and highly convoluted dermal–epidermal junction with interdigitations into the dermis called rete ridges (white arrows). Dermally, there are fibrillin‐rich microfibrils (black arrows) within the papillary dermis. In contrast, photoaged skin (b) exhibits a thinner epidermis, flattened dermal–epidermal junction (with marked loss of rete ridges) and loss of fibrillin‐rich microfibrils.
FIGURE 2
FIGURE 2
Categorization of retinoid compounds. Characterization of the retinoid family of compounds is based on structure and time of introduction. These are categorized as: Non‐aromatic (a), mono‐aromatic with an N‐terminal benzene ring (b), poly‐aromatic (c) and pyranone‐derived (d). Compounds that have been used in cosmeceutical formulations indicated with an asterisk (*).
FIGURE 3
FIGURE 3
The retinoid signalling pathway. Systemic and topical retinol enters the cell via different pathways but are processed intracellularly in the same way. Processing of retinol to retinoic acid leads to activation of the RAR/RXR or PPARβ/δ/RXR pathways via translocation by CRABP2 or FABP5, respectively. The CRABP2/FABP5 ratio determines which of the nuclear receptors is activated. A higher CRABP2/FABP5 ratio drives RAR/RXR receptor heterodimerization and activation of cell growth arrest and apoptosis. Conversely, a lower CRABP2/FABP5 ratio drives activation of proliferation and differentiation by activating the PPARβ/δ‐RXR pathway.
FIGURE 4
FIGURE 4
Retinol‐induced increase in epidermal thickness and dermal fibrillin deposition. Retinol induces remodelling by increasing epidermal thickness and the dermal deposition of fibrillin‐rich microfibrils (FRM) in photoaged skin following 12‐day patch test under occlusion. (a) Representative images showing immunostaining for fibrillin‐rich microfibrils. (b) Quantification of FRM deposition by ordinal scoring. (c) Quantification of epidermal thickness. Statistical significance for differences between the treatments compared to the baseline control was assessed by repeated‐measures one‐way ANOVA followed by a Dunnett's multiple comparison test (*p < 0.05). (Extracted from Mellody et al. [86]).

Similar articles

Cited by

References

    1. Boer M, Duchnik E, Maleszka R, Marchlewicz M. Structural and biophysical characteristics of human skin in maintaining proper epidermal barrier function. Postepy Dermatol Alergol. 2016;33(1):1–5. - PMC - PubMed
    1. Madison KC. Barrier function of the skin: "la raison d'être" of the epidermis. J Invest Dermatol. 2003;121(2):231–241. - PubMed
    1. Arda O, Göksügür N, Tüzün Y. Basic histological structure and functions of facial skin. Clin Dermatol. 2014;32(1):3–13. - PubMed
    1. Fore J. A review of skin and the effects of aging on skin structure and function. Ostomy Wound Manage. 2006;52(9):24–35; quiz 6–7. - PubMed
    1. Svoboda M, Bílková Z, Muthný T. Could tight junctions regulate the barrier function of the aged skin? J Dermatol Sci. 2016;81(3):147–152. - PubMed

MeSH terms

Grants and funding