Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Jul 12;15(8):1396-1401.
doi: 10.1021/acsmedchemlett.4c00145. eCollection 2024 Aug 8.

Predictions of Chromatography Methods by Chemical Structure Similarity to Accelerate High-Throughput Medicinal Chemistry

Affiliations

Predictions of Chromatography Methods by Chemical Structure Similarity to Accelerate High-Throughput Medicinal Chemistry

Jun Wang et al. ACS Med Chem Lett. .

Abstract

We introduce a new workflow that relies heavily on chemical quantitative structure-retention relationship (QSRR) models to accelerate method development for micro/mini-scale high-throughput purification (HTP). This provides faster access to new active pharmaceutical ingredients (APIs) through high-throughput experimentation (HTE). By comparing fingerprint structural similarity (e.g., Tanimoto index) with small training data sets containing a few hundred diverse small molecule antagonists of a lipid metabolizing enzyme, we can predict retention time (RT) of new compounds. Machine learning (ML) helps to identify optimal separation conditions for purification without performing the traditional crude QC step involving ultrahigh performance liquid chromatography (UHPLC) analyses of each compound. This green-chemistry approach with the use of predictive tools reduces cost and significantly shortens the design-make-test (DMT) cycle of new drugs by way of HTE.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing financial interest.

Figures

Scheme 1
Scheme 1. Aryl Amide Coupling Library
Figure 1
Figure 1
Method prediction and micro/mini-scale purification workflow that delivers final compound arrays for assay.
Figure 2
Figure 2
Similarity data for the QSRR training set. (A) Histogram showcasing the distribution of pairwise structural similarities expressed as the Tanimoto index. (B) Heat map visualization for all 168 compounds of the training set.
Figure 3
Figure 3
Calculated and experimental UHPLC RT correlation of the QSRR test set.

References

    1. Campos K. R.; Coleman P. J.; Alvarez J. C.; Dreher S. D.; Garbaccio R. M.; Terrett N. K.; Tillyer R. D.; Truppo M. D.; Parmee E. R. The Importance of Synthetic Chemistry in the Pharmaceutical Industry. Science (80-.) 2019, 363 (6424), eaat0805 10.1126/science.aat0805. - DOI - PubMed
    1. Buitrago Santanilla A.; Regalado E. L.; Pereira T.; Shevlin M.; Bateman K.; Campeau L.-C.; Schneeweis J.; Berritt S.; Shi Z.-C.; Nantermet P.; Liu Y.; Helmy R.; Welch C. J.; Vachal P.; Davies I. W.; Cernak T.; Dreher S. D. Nanomole-Scale High-Throughput Chemistry for the Synthesis of Complex Molecules. Science (80-.) 2015, 347 (6217), 49–53. 10.1126/science.1259203. - DOI - PubMed
    1. Cernak T.; Gesmundo N. J.; Dykstra K.; Yu Y.; Wu Z.; Shi Z. C.; Vachal P.; Sperbeck D.; He S.; Murphy B. A.; Sonatore L.; Williams S.; Madeira M.; Verras A.; Reiter M.; Lee C. H.; Cuff J.; Sherer E. C.; Kuethe J.; Goble S.; Perrotto N.; Pinto S.; Shen D. M.; Nargund R.; Balkovec J.; DeVita R. J.; Dreher S. D. Microscale High-Throughput Experimentation as an Enabling Technology in Drug Discovery: Application in the Discovery of (Piperidinyl)Pyridinyl-1H-Benzimidazole Diacylglycerol Acyltransferase 1 Inhibitors. J. Med. Chem. 2017, 60 (9), 3594–3605. 10.1021/acs.jmedchem.6b01543. - DOI - PubMed
    1. Krska S. W.; DiRocco D. A.; Dreher S. D.; Shevlin M. The Evolution of Chemical High-Throughput Experimentation to Address Challenging Problems in Pharmaceutical Synthesis. Acc. Chem. Res. 2017, 50 (12), 2976–2985. 10.1021/acs.accounts.7b00428. - DOI - PubMed
    1. Gesmundo N. J.; Tu N. P.; Sarris K. A.; Wang Y. ChemBeads-Enabled Photoredox High-Throughput Experimentation Platform to Improve C(Sp2)-C(Sp3) Decarboxylative Couplings. ACS Med. Chem. Lett. 2023, 14 (4), 521–529. 10.1021/acsmedchemlett.2c00538. - DOI - PMC - PubMed

LinkOut - more resources