Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Nov 18;63(47):e202402543.
doi: 10.1002/anie.202402543. Epub 2024 Oct 15.

Identification of Novel Target DCTPP1 for Colorectal Cancer Therapy with the Natural Small-Molecule Inhibitors Regulating Metabolic Reprogramming

Affiliations

Identification of Novel Target DCTPP1 for Colorectal Cancer Therapy with the Natural Small-Molecule Inhibitors Regulating Metabolic Reprogramming

Li Feng et al. Angew Chem Int Ed Engl. .

Abstract

Colorectal cancer (CRC) is one of the most common malignant tumors. Identification of new effective drug targets for CRC and exploration of bioactive small-molecules are clinically urgent. The human dCTP pyrophosphatase 1 (DCTPP1) is a newly identified pyrophosphatase regulating the cellular nucleotide pool but remains unexplored as potential target for CRC treatment. Here, twelve unprecedented chemical architectures terpene-nonadride heterodimers (1-12) and their monomers (13-20) were isolated from endophyte Bipolaris victoriae S27. Compounds 1-12 represented the first example of terpene-nonadride heterodimers, in which nonadride monomers of 1 and 2 were also first example of 5/6 bicyclic nonadrides. A series of assays showed that 2 could repress proliferation and induce cell cycle arrest, apoptotic and autophagic CRC cell death in vitro and in vivo. Clinical cancer samples data revealed that DCTPP1 was a novel target associated with poor survival in CRC. DCTPP1 was also identified as a new target protein of 2. Mechanically, compound 2 bound to DCTPP1, inhibited its enzymatic activity, intervened with amino acid metabolic reprogramming, and exerted anti-CRC activity. Our study demonstrates that DCTPP1 was a novel potential biomarker and therapeutic target for CRC, and 2 was the first natural anti-CRC drug candidate targeting DCTPP1.

Keywords: Bipolaris victoriae; amino acid metabolic reprogramming; human dCTP pyrophosphatase 1; structure elucidation; terpene-nonadride heterodimers.

PubMed Disclaimer

References

    1. None
    1. R. L. Siegel, K. D. Miller, N. S. Wagle, A. Jemal, Ca-Cancer J. Clin. 2023, 73, 17–48;
    1. H. Sung, J. Ferlay, R. L. Siegel, M. Laversanne, I. Soerjomataram, A. Jemal, F. Bray, Ca-Cancer J. Clin. 2021, 71, 209–249.
    1. F. M. Brodsky, Pharm. Res. 1988, 5, 1–9.
    1. Y. H. Xie, Y. X. Chen, J. Y. Fang, Signal Transduct Target Ther. 2020, 5, 22–23.

MeSH terms

LinkOut - more resources