Circular Melt-Spun Textile Fibers from Polyethylene-like Long-Chain Polyesters
- PMID: 39144276
- PMCID: PMC11320378
- DOI: 10.1021/acsapm.4c01570
Circular Melt-Spun Textile Fibers from Polyethylene-like Long-Chain Polyesters
Abstract
As textiles contribute considerably to overall anthropogenic pollution and resource consumption, increasing their circularity is essential. We report the melt-spinning of long-chain polyesters, materials recently shown to be fully chemically recyclable under mild conditions, as well as biodegradable. High-quality uniform fibers are enabled by the polymers' favorable combination of thermal stability, crystallization ability, melt strength, and homogeneity. The polyethylene-like crystalline structure endows these fibers with mechanical strength, which is further enhanced by its orientation upon drawing (tensile strength of up to 270 MPa). In vitro depolymerization by high concentrations of Humicola insolens cutinase underlines the accessibility of the fibers for enzymatic degradation, which can proceed from the surface and through the entire fiber within days, depending on the choice of the fiber material. Fibers and knitted fabrics withstand stress, as encountered in machine washing.
© 2024 The Authors. Published by American Chemical Society.
Conflict of interest statement
The authors declare no competing financial interest.
Figures





References
-
- Zhang L.; Leung M. Y.; Boriskina S.; Tao X. Advancing Life Cycle Sustainability of Textiles through Technological Innovations. Nat. Sustain. 2022, 6 (3), 243–253. 10.1038/s41893-022-01004-5. - DOI
-
- Alberghini M.; Hong S.; Lozano L. M.; Korolovych V.; Huang Y.; Signorato F.; Zandavi S. H.; Fucetola C.; Uluturk I.; Tolstorukov M. Y.; Chen G.; Asinari P.; Osgood R. M.; Fasano M.; Boriskina S. V. Sustainable Polyethylene Fabrics with Engineered Moisture Transport for Passive Cooling. Nat. Sustain. 2021, 4 (8), 715–724. 10.1038/s41893-021-00688-5. - DOI
-
- Vidal F.; van der Marel E. R.; Kerr R. W. F.; McElroy C.; Schroeder N.; Mitchell C.; Rosetto G.; Chen T. T. D.; Bailey R. M.; Hepburn C.; Redgwell C.; Williams C. K. Designing a Circular Carbon and Plastics Economy for a Sustainable Future. Nature 2024, 626 (7997), 45–57. 10.1038/s41586-023-06939-z. - DOI - PubMed
-
- Vollmer I.; Jenks M. J. F.; Roelands M. C. P.; White R. J.; van Harmelen T.; de Wild P.; van der Laan G. P.; Meirer F.; Keurentjes J. T. F.; Weckhuysen B. M. Beyond Mechanical Recycling: Giving New Life to Plastic Waste. Angew. Chem., Int. Ed. 2020, 59 (36), 15402–15423. 10.1002/anie.201915651. - DOI - PMC - PubMed
-
- Coates G. W.; Getzler Y. D. Y. L. Chemical Recycling to Monomer for an Ideal, Circular Polymer Economy. Nat. Rev. Mater. 2020, 5 (7), 501–516. 10.1038/s41578-020-0190-4. - DOI
LinkOut - more resources
Full Text Sources
Research Materials