Spinal cord microglia drive sex differences in ethanol-mediated PGE2-induced allodynia
- PMID: 39147173
- DOI: 10.1016/j.bbi.2024.08.026
Spinal cord microglia drive sex differences in ethanol-mediated PGE2-induced allodynia
Abstract
The mechanisms of how long-term alcohol use can lead to persistent pain pathology are unclear. Understanding how earlier events of short-term alcohol use can lower the threshold of non-painful stimuli, described as allodynia could prove prudent to understand important initiating mechanisms. Previously, we observed that short-term low-dose alcohol intake induced female-specific allodynia and increased microglial activation in the spinal cord dorsal horn. Other literature describes how chronic ethanol exposure activates Toll-like receptor 4 (TLR4) to initiate inflammatory responses. TLR4 is expressed on many cell types, and we aimed to investigate whether TLR4 on microglia is sufficient to potentiate allodynia during a short-term/low-dose alcohol paradigm. Our study used a novel genetic model where TLR4 expression is removed from the entire body by introducing a floxed transcriptional blocker (TLR4-null background (TLR4LoxTB)), then restricted to microglia by breeding TLR4LoxTB animals with Cx3CR1:CreERT2 animals. As previously reported, after 14 days of ethanol administration alone, we observed no increased pain behavior. However, we observed significant priming effects 3 hrs post intraplantar injection of a subthreshold dose of prostaglandin E2 (PGE2) in wild-type and microglia-TLR4 restricted female mice. We also observed a significant female-specific shift to pro-inflammatory phenotype and morphological changes in microglia of the lumbar dorsal horn. Investigations in pain priming-associated neuronal subtypes showed an increase of c-Fos and FosB activity in PKCγ interneurons in the dorsal horn of female mice directly corresponding to increased microglial activity. This study uncovers cell- and female-specific roles of TLR4 in sexual dimorphisms in pain induction among non-pathological drinkers.
Keywords: Activation; Ethanol; Microglia; Morphology; Neuroimmune; Pain; Priming; Sex differences; Toll-like receptor 4.
Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.
Conflict of interest statement
Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous
