A topological Hund nodal line antiferromagnet
- PMID: 39147740
- PMCID: PMC11327286
- DOI: 10.1038/s41467-024-51255-3
A topological Hund nodal line antiferromagnet
Abstract
The interplay of topology, magnetism, and correlations gives rise to intriguing phases of matter. In this study, through state-of-the-art angle-resolved photoemission spectroscopy, density functional theory, and dynamical mean-field theory calculations, we visualize a fourfold degenerate Dirac nodal line at the boundary of the bulk Brillouin zone in the antiferromagnet YMn2Ge2. We further demonstrate that this gapless, antiferromagnetic Dirac nodal line is enforced by the combination of magnetism, space-time inversion symmetry, and nonsymmorphic lattice symmetry. The corresponding drumhead surface states traverse the whole surface Brillouin zone. YMn2Ge2 thus serves as a platform to exhibit the interplay of multiple degenerate nodal physics and antiferromagnetism. Interestingly, the magnetic nodal line displays a d-orbital dependent renormalization along its trajectory in momentum space, thereby manifesting Hund's coupling. Our findings offer insights into the effect of electronic correlations on magnetic Dirac nodal lines, leading to an antiferromagnetic Hund nodal line.
© 2024. The Author(s).
Conflict of interest statement
The authors declare no competing interests.
Figures
References
-
- Hasan, M. Z., Xu, S.-Y. & Bian, G. Topological insulators, topological superconductors and Weyl fermion semimetals: discoveries, perspectives and outlooks. Phys. Scr.2015, 014001 (2015).10.1088/0031-8949/2015/T164/014001 - DOI
-
- Hasan, M. Z., Xu, S.-Y., Belopolski, I. & Huang, S.-M. Discovery of Weyl fermion semimetals and topological Fermi arc states. Annu. Rev. Condens. Matter Phys.8, 289 (2017).10.1146/annurev-conmatphys-031016-025225 - DOI
-
- Armitage, N. P., Mele, E. J. & Vishwanath, A. Weyl and Dirac semimetals in three-dimensional solids. Rev. Mod. Phys.90, 015001 (2018).10.1103/RevModPhys.90.015001 - DOI
