Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Jul 10;19(4):775-789.
doi: 10.1016/j.jtumed.2024.06.008. eCollection 2024 Aug.

In silico and in vitro analyses to investigate the effects of vitamin C on VEGF protein

Affiliations

In silico and in vitro analyses to investigate the effects of vitamin C on VEGF protein

Azra Sakhawat et al. J Taibah Univ Med Sci. .

Abstract

Objectives: This study was conducted to evaluate the effects of vitamin C on apoptotic and proliferative genes in injured HepG2 cells.

Methods: In silico analysis was performed using molecular docking of chemical compounds with vascular endothelial growth factor (VEGF). The different computational tools used were AutoDock Vina, BIOVIA DISCOVERY studio, and PyMOL. Drug likeness and toxicity were analyzed by SWISS ADMET. Cells that were 60-70% confluent were treated with different concentrations of hydrogen peroxide (H2O2) (100-2000 μM) and ascorbic acid (30, 60, 90 μg/mL). The MTT cell proliferation assay was performed to compare the proliferative potential of HepG2 cells treated with H2O2 or ascorbic acid with untreated HepG2 cells using 96-well plates.

Results: The lowest binding energy of VEGF with vitamin C -5.2 kcal/mol and L-ascorbic acid-2 glycoside -4.7 kcal/mol was observed by in silico analysis. Vitamin C was selected because it exhibited a high interaction with VEGF and fulfilled Lipinski's rule, and had better oral viability and pharmacokinetics compared to L-ascorbic acid-2 glycoside. Cell viability assays showed that vitamin C had significant apoptotic effects (P < 0.0001). After treating HepG2 cells with ascorbic acid, reduced VEGF (angiogenesis) was observed as determined by apoptotic and proliferative gene expression. Ascorbic acid treatment of HepG2 cells led to downregulation of the proliferation markers, proliferating cell nuclear antigen, Ki67, and DNA topoisomerase II alpha. Increased apoptosis after treatment with vitamin C was observed due to upregulation of p53 and annexin V.

Conclusion: The results of this study showed that vitamin C inhibited the growth of cancer cells, thus protecting HepG2 cells from oxidative stress. Vitamin C exhibited antiproliferative activity as observed in silico and in vitro, as well as by the inhibited expression of genes involved in protein synthesis.

أهداف البحث: أجريت هذه الدراسة لتقييم تأثير فيتامين سي على جينات الاستماتة والتكاثر في خلايا "هيب جي 2" المصابة.

طريقة البحث: في تحليل السيليكو تم إجراء استخدام الالتحام الجزيئي للمركبات الكيميائية مع بروتين عامل النمو البطاني الوعائي. الأدوات الحسابية المختلفة المستخدمة هي "أوتودوك فينا" و"بايوفيا ديسكفري ستوديو" و "بايمول". تم تحليل تشابه الأدوية وسميتها بواسطة "سويس أدميت". تمت معالجة التقاء الخلايا – 60-70% بتركيزات مختلفة من "اتش 2 أوه 2" (100-2000 مايكرومولر) وحمض الأسكوربيك (30، 60، 90 ميكروغرام / مل). تم إجراء اختبار موت الخلايا "ام تي تي" لمقارنة الإمكانات التكاثرية لخلايا "هيب جي 2" المعالجة بـ "اتش 2 أوه 2" وحمض الأسكوربيك باستخدام 96 لوحة جيدة.

النتائج: تمت ملاحظة أدنى طاقة ربط لـ بروتين عامل النمو البطاني الوعائي مع فيتامين سي -5,2 كيلو كالوري/مول وحمض الأسكوربيك-2 جليكوسيد -4.7 كيلو كالوري/مول في تحليل السيليكو. تم اختيار فيتامين سي لأنه يظهر تفاعلا عاليا مع بروتين عامل النمو البطاني الوعائي ويحقق قاعدة ليبينسكي، والقدرة على البقاء عن طريق الفم، والحركية الدوائية مقارنة بجليكوسيد حمض الأسكوربيك. أظهرت فحوصات صلاحية الخلية أن فيتامين سي كان له تأثيرات موت الخلايا المبرمج. بعد معالجة خلايا "هيب جي 2" بحمض الأسكوربيك، لوحظ انخفاض بروتين عامل النمو البطاني الوعائي (تكوين الأوعية) من خلال التعبير الجيني للموت المبرمج والتكاثري. أدى علاج حامض الأسكوربيك لخط خلايا "هيب جي 2" إلى تنظيم علامات التكاثر "بي سي ان ايه" و "كي آي 67" و تي أوه بي 2 ايه". وقد لوحظت زيادة في موت الخلايا المبرمج بعد العلاج بفيتامين سي بسبب تنظيم "بي53" و "أنيكسين في".

الاستنتاجات: بناء على النتائج، من الواضح أن فيتامين سي يثبط نمو الخلايا السرطانية وبالتالي يحمي خلايا "هيب جي 2" من الإجهاد التأكسدي. أظهر فيتامين سي نشاطا مضادا للتكاثر كما لوحظ في السيليكو، وفي المختبر، وكذلك النتائج المحتملة من تثبيط التعبير عن الجينات المشاركة في تخليق البروتين.

Keywords: Apoptosis; Cell cycle; Gene upregulation; Proliferative genes; Vitamin C.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Flow chart of the Methodology.
Figure 2
Figure 2
Protein structure validation.
Figure 3
Figure 3
In silico modeled structure representation of complex VEGF/vitamin C. (a): 3D Spherical cartoon structure of VEGF represent the interaction with ligand and binding pocket cavity interacting of residue of VEGF with vitamin C. (b): Surrounding interacting residue of VEGF included GLU-64, LEU-66, CYS-63, ASP-63, GLU-67, ASN-62, CYS-63, and GLY-59. (c): 2D structure of VEGF with vitamin C. Dotted line shows the polar interaction.
Figure 4
Figure 4
In silico modeled structure representation of complex VEGF/AA2G. (a): 3D spherical structure of VEGF represents the interaction with ligand and binding pocket cavity interacting residue of VEGF with vitamin C. (b): Interacting residue of VEGF included ASP-34, ASN-62, PHE-36, GLY-69, GLU-64, LEU-66, and GLU-67. (c): 2D structure of VEGF with LAA2G. Dotted line shows polar interaction.
Figure 5
Figure 5
Analysis of cell viability. (a) MTT assay (b) IC50. H2O2 to produce oxidative stress that targets malignant cells. The values are presented as the mean ± standard error of the mean (SEM) where P < 0.0003 and ∗ indicate significant differences between the different concentrations of H2O2-treated and untreated cells.
Figure 6
Figure 6
Analysis of cell viability: (a). H2O2-pretreated HepG2 cells (injured) after ascorbic acid treatment. (b). The IC50 value of vitamin C was calculated as 2.25 mg/mL in hepatocellular carcinoma. The values are presented as the mean ± SEM where P < 0.0001 and ∗ indicate significant differences between different concentrations of vitamin C and untreated cells.
Figure 7
Figure 7
Cell viability assay. (a) Trypan blue (b) Crystal violet. (a). The bar graph shows a lower number of dead cells treated with ascorbic acid. (b)The bar graph shows an increase in the viability of cells treated with ascorbic acid. The values are shown as the mean ± SEM. P < 0.0008 and P < 0.0001 and ∗ indicate significant differences between different concentrations of vitamin C and untreated cells.
Figure 8
Figure 8
Expression of VEGF. The effect of ascorbic acid at 90 μg/mL in HepG2 cells showed significantly reduced VEGF gene expression in the presence of H2O2, where P < 0.0001 and ∗ indicate significantly different treatments from untreated cells.
Figure 9
Figure 9
Analysis of apoptotic proteins via ELISA. (a) p53 (b) Annexin V. Compared with the control group, the bar graph shows higher apoptotic gene expression after ascorbic acid treatment at 90 μg/mL. P < 0.0001 and ∗ indicate significantly different treatments from untreated cells.
Figure 10
Figure 10
Gene expression analysis. (a) TOP2A (b) Ki-67 (c) PCNA. The bar graph represents the decrease in proliferative gene expression compared to that in the untreated group where P < 0.0001 and ∗ shows significant differences between treated and untreated cells.
Figure 11
Figure 11
Analysis of gene expression. (a) p53 (b) B-cell lymphoma 2-associated X protein (c) Caspase-3. More apoptotic gene expression was shown in the bar graph than in the untreated group, where P = 0.0001 and ∗ indicate that the treated and untreated cells significantly differed from one another.
Figure 12
Figure 12
Analysis of antioxidants. (a) Glutathione reductase (b) catalase (c) superoxide dismutase (d) Ascarbate peroxidase. Compared with the untreated group, the ascorbic acid-treated group showed both a decline and an increase in antioxidant levels in the bar graph. P < 0.0001 and ∗ indicate a significant difference between treated and untreated cells.

Similar articles

Cited by

References

    1. Little M., Jordens C.F., Paul K., Montgomery K., Philipson B. Liminality: a major category of the experience of cancer illness. J Bioeth Inq. 2022;19(1):37–48. - PubMed
    1. Kalager M., Adami H.O., Lagergren P., Steindorf K., Dickman P.W. Cancer outcomes research—a European challenge: measures of the cancer burden. Mol Oncol. 2021;15(12):3225–3241. - PMC - PubMed
    1. Birkbak N.J., McGranahan N. Cancer genome evolutionary trajectories in metastasis. Cancer Cell. 2020;37(1):8–19. - PubMed
    1. Fares J., Fares M.Y., Khachfe H.H., Salhab H.A., Fares Y. Molecular principles of metastasis: a hallmark of cancer revisited. Signal Transduct Targeted Ther. 2020;5(1) - PMC - PubMed
    1. Chen X., Liu R., Liu X., Xu C., Wang X. L-ascorbic Acid-2-Glucoside inhibits Helicobacter pylori-induced apoptosis through mitochondrial pathway in Gastric Epithelial cells. Biomed Pharmacother. 2018;97:75–81. - PubMed

LinkOut - more resources