Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Observational Study
. 2024 Aug 17;25(1):312.
doi: 10.1186/s12931-024-02910-2.

Epidemiology, ventilation management and outcomes of COVID-19 ARDS patients versus patients with ARDS due to pneumonia in the Pre-COVID era

Collaborators, Affiliations
Observational Study

Epidemiology, ventilation management and outcomes of COVID-19 ARDS patients versus patients with ARDS due to pneumonia in the Pre-COVID era

Fleur-Stefanie L I M van der Ven et al. Respir Res. .

Erratum in

Abstract

Background: Ventilation management may differ between COVID-19 ARDS (COVID-ARDS) patients and patients with pre-COVID ARDS (CLASSIC-ARDS); it is uncertain whether associations of ventilation management with outcomes for CLASSIC-ARDS also exist in COVID-ARDS.

Methods: Individual patient data analysis of COVID-ARDS and CLASSIC-ARDS patients in six observational studies of ventilation, four in the COVID-19 pandemic and two pre-pandemic. Descriptive statistics were used to compare epidemiology and ventilation characteristics. The primary endpoint were key ventilation parameters; other outcomes included mortality and ventilator-free days and alive (VFD-60) at day 60.

Results: This analysis included 6702 COVID-ARDS patients and 1415 CLASSIC-ARDS patients. COVID-ARDS patients received lower median VT (6.6 [6.0 to 7.4] vs 7.3 [6.4 to 8.5] ml/kg PBW; p < 0.001) and higher median PEEP (12.0 [10.0 to 14.0] vs 8.0 [6.0 to 10.0] cm H2O; p < 0.001), at lower median ΔP (13.0 [10.0 to 15.0] vs 16.0 [IQR 12.0 to 20.0] cm H2O; p < 0.001) and higher median Crs (33.5 [26.6 to 42.1] vs 28.1 [21.6 to 38.4] mL/cm H2O; p < 0.001). Following multivariable adjustment, higher ΔP had an independent association with higher 60-day mortality and less VFD-60 in both groups. Higher PEEP had an association with less VFD-60, but only in COVID-ARDS patients.

Conclusions: Our findings show important differences in key ventilation parameters and associations thereof with outcomes between COVID-ARDS and CLASSIC-ARDS.

Trial registration: Clinicaltrials.gov (identifier NCT05650957), December 14, 2022.

Keywords: ARDS; Acute respiratory distress syndrome; COVID–19; Critical care; Mechanical ventilation; Ventilation management.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing interests.

Figures

Fig. 1
Fig. 1
Flowchart of included studies. Abbreviations: ARDS = acute respiratory distress syndrome; COVID–19 = coronavirus disease 2019
Fig. 2
Fig. 2
Key ventilation parameters. Cumulative frequency distribution of VT, PEEP, ΔP, and respiratory system compliance on the first calendar day for each variable. Vertical dotted lines represent broadly accepted safety cutoffs for each variable, and horizontal dotted lines show the respective proportion of patients reaching that cutoff. Abbreviations: VT = tidal volume; PBW = predicted bodyweight; PEEP = positive end–expiratory pressure; ΔP = driving pressure; CRS = respiratory system compliance
Fig. 3
Fig. 3
Mortality and ventilator–free days and Alive at day–60, and associations with ventilator parameters. The estimate is the average effect of the predictor variable on the response variable, while controlling for the other variables in the model. A positive estimate suggests a proportional effect, whereas a negative estimate suggests an inversely proportional effect. Abbreviations: ARDS = acute respiratory distress syndrome; VFD = ventilator–free days and alive; IQR = interquartile range; N = number; CI = confidence interval; VT = tidal volume; PBW = predicted bodyweight; PEEP = positive end–expiratory pressure; ΔP = driving pressure

References

    1. Chiumello D, Busana M, Coppola S, Romitti F, Formenti P, Bonifazi M, Pozzi T, Palumbo MM, Cressoni M, Herrmann P, Meissner K, Quintel M, Camporota L, Marini JJ, Gattinoni L. Physiological and quantitative CT-scan characterization of COVID-19 and typical ARDS: a matched cohort study. Intensive Care Med. 2020;46:2187–96. - PMC - PubMed
    1. Grasselli G, Tonetti T, Protti A, Langer T, Girardis M, Bellani G, Laffey J, Carrafiello G, Carsana L, Rizzuto C, Zanella A, Scaravilli V, Pizzilli G, Grieco DL, Di Meglio L, de Pascale G, Lanza E, Monteduro F, Zompatori M, Filippini C, Locatelli F, Cecconi M, Fumagalli R, Nava S, Vincent JL, Antonelli M, Slutsky AS, Pesenti A, Ranieri VM. Pathophysiology of COVID-19-associated acute respiratory distress syndrome: a multicentre prospective observational study. Lancet Respir Med. 2020;8:1201–8. - PMC - PubMed
    1. Grasselli G, Zangrillo A, Zanella A, Antonelli M, Cabrini L, Castelli A, Cereda D, Coluccello A, Foti G, Fumagalli R, Iotti G, Latronico N, Lorini L, Merler S, Natalini G, Piatti A, Ranieri MV, Scandroglio AM, Storti E, Cecconi M, Pesenti A. Baseline Characteristics and Outcomes of 1591 Patients Infected With SARS-CoV-2 Admitted to ICUs of the Lombardy Region, Italy. JAMA. 2020;323:1574–81. - PMC - PubMed
    1. Gattinoni L, Chiumello D, Rossi S. COVID-19 pneumonia: ARDS or not? Crit Care. 2020;24:154. - PMC - PubMed
    1. Le Pape M, Besnard C, Acatrinei C, Guinard J, Boutrot M, Genève C, Boulain T, Barbier F. Clinical impact of ventilator-associated pneumonia in patients with the acute respiratory distress syndrome: a retrospective cohort study. Ann Intensive Care. 2022;12:24. - PMC - PubMed

Publication types

Associated data