MiR-221 on protective oxidative induced by selenium modified Codonopsis pilosula polysaccharide
- PMID: 39154690
- DOI: 10.1016/j.ijbiomac.2024.134815
MiR-221 on protective oxidative induced by selenium modified Codonopsis pilosula polysaccharide
Abstract
Oxidative stress plays an important role in various diseases. miR-221 has been reported to regulate oxidative stress. However, the mechanism of miR-221 in regulating oxidative stress induced by sCPPS5 remains unclear. This study aimed to investigate the protective effects and mechanisms of miR-221 on oxidative stress induced by sCPPS5. The expression of SOD, CAT, MDA, LDH, MMP, caspase-3 activity and apoptosis were measured. In addition, the key signaling factors in the Keap1-Nrf2-ARE signaling pathway were determined by real-time PCR and Western blot. Mice were employed to evaluate the effects of sCPPS5 and the possible mechanism in vivo. sCPPS5 promoted the expression of SOD and CAT and activated Keap1-Nrf2-ARE signaling pathway inhibit the MDA content, MMP, caspase-3 activity, apoptosis and LDH release rate after transfection with miR-221 mimics and inhibitors. Consistently, sCPPS5 has the potential to enhance the expression of antioxidant enzymes as well as upregulate mRNA expression of crucial signal proteins in vivo. miR-221 on oxidative stress protection induced by sCPPS5 possibly through regulating the Keap1-Nrf2-ARE signaling pathway in macrophages.
Keywords: Keap1-Nrf2 signaling pathway; Selenium Codonopsis pilosula polysaccharide; miR-221.
Copyright © 2024. Published by Elsevier B.V.
Conflict of interest statement
Declaration of competing interest Authors declare that there is no conflict of interests.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous
