Engineering Shewanella oneidensis-Carbon Felt Biohybrid Electrode Decorated with Bacterial Cellulose Aerogel-Electropolymerized Anthraquinone to Boost Energy and Chemicals Production
- PMID: 39159306
- PMCID: PMC11497010
- DOI: 10.1002/advs.202407599
Engineering Shewanella oneidensis-Carbon Felt Biohybrid Electrode Decorated with Bacterial Cellulose Aerogel-Electropolymerized Anthraquinone to Boost Energy and Chemicals Production
Abstract
Interfacial electron transfer between electroactive microorganisms (EAMs) and electrodes underlies a wide range of bio-electrochemical systems with diverse applications. However, the electron transfer rate at the biotic-electrode interface remains low due to high transmembrane and cell-electrode interfacial electron transfer resistance. Herein, a modular engineering strategy is adopted to construct a Shewanella oneidensis-carbon felt biohybrid electrode decorated with bacterial cellulose aerogel-electropolymerized anthraquinone to boost cell-electrode interfacial electron transfer. First, a heterologous riboflavin synthesis and secretion pathway is constructed to increase flavin-mediated transmembrane electron transfer. Second, outer membrane c-Cyts OmcF is screened and optimized via protein engineering strategy to accelerate contacted-based transmembrane electron transfer. Third, a S. oneidensis-carbon felt biohybrid electrode decorated with bacterial cellulose aerogel and electropolymerized anthraquinone is constructed to boost the interfacial electron transfer. As a result, the internal resistance decreased to 42 Ω, 480.8-fold lower than that of the wild-type (WT) S. oneidensis MR-1. The maximum power density reached 4286.6 ± 202.1 mW m-2, 72.8-fold higher than that of WT. Lastly, the engineered biohybrid electrode exhibited superior abilities for bioelectricity harvest, Cr6+ reduction, and CO2 reduction. This study showed that enhancing transmembrane and cell-electrode interfacial electron transfer is a promising way to increase the extracellular electron transfer of EAMs.
Keywords: CO2 reduction; Shewanella oneidensis; bioelectricity harvest; biohybrid electrode; interfacial electron transfer.
© 2024 The Author(s). Advanced Science published by Wiley‐VCH GmbH.
Conflict of interest statement
The authors declare no conflict of interest.
Figures





Similar articles
-
Engineering Microbial Consortium Biohybrid System to Efficiently Produce Electricity from Lignocellulose Biomass.ACS Synth Biol. 2025 Jun 20;14(6):2305-2315. doi: 10.1021/acssynbio.5c00178. Epub 2025 Jun 5. ACS Synth Biol. 2025. PMID: 40471978
-
Flavin electron shuttles dominate extracellular electron transfer by Shewanella oneidensis.mBio. 2013 Jan 15;4(1):e00553-12. doi: 10.1128/mBio.00553-12. mBio. 2013. PMID: 23322638 Free PMC article.
-
Carbon dots-fed Shewanella oneidensis MR-1 for bioelectricity enhancement.Nat Commun. 2020 Mar 13;11(1):1379. doi: 10.1038/s41467-020-14866-0. Nat Commun. 2020. PMID: 32170166 Free PMC article.
-
[Advances in electrochemically active biofilm of Shewanella oneidensis MR-1].Sheng Wu Gong Cheng Xue Bao. 2023 Mar 25;39(3):881-897. doi: 10.13345/j.cjb.220468. Sheng Wu Gong Cheng Xue Bao. 2023. PMID: 36994560 Review. Chinese.
-
Microbial extracellular electron transfer and strategies for engineering electroactive microorganisms.Biotechnol Adv. 2021 Dec;53:107682. doi: 10.1016/j.biotechadv.2020.107682. Epub 2020 Dec 14. Biotechnol Adv. 2021. PMID: 33326817 Review.
References
-
- a) Rabaey K., Rozendal R. A., Nat. Rev. Microbiol. 2010, 8, 706; - PubMed
- b) Liu Z., Wang K., Chen Y., Tan T., Nielsen J., Nat. Catal. 2020, 3, 274.
-
- a) Zhang J., Li F., Liu D., Liu Q., Song H., Chem. Soc. Rev. 2023, 53, 3; - PubMed
- b) Atkinson J. T., Su L., Zhang X., Bennett G. N., Silberg J. J., Ajo‐Franklin C. M., Nature 2022, 611, 548; - PubMed
- c) Huang J., Xue S., Buchmann P., Teixeira A. P., Fussenegger M., Nat. Metab. 2023, 5, 1395. - PMC - PubMed
-
- a) Melton E. D., Swanner E. D., Behrens S., Schmidt C., Kappler A., Nat. Rev. Microbiol. 2014, 12, 797; - PubMed
- b) Shi L., Dong H., Reguera G., Beyenal H., Lu A., Liu J., Yu H. Q., Fredrickson J. K., Nat. Rev. Microbiol. 2016, 14, 651; - PubMed
- c) Logan B. E., Elimelech M., Nature 2012, 488, 313. - PubMed
-
- a) Pirbadian S., Barchinger S. E., Leung K. M., Byun H. S., Jangir Y., Bouhenni R. A., Reed S. B., Romine M. F., Saffarini D. A., Shi L., Gorby Y. A., Golbeck J. H., El‐Naggar M. Y., Proc. Natl. Acad. Sci. USA 2014, 111, 12883; - PMC - PubMed
- b) Salimijazi F., Kim J., Schmitz A. M., Grenville R., Bocarsly A., Barstow B., Joule 2020, 4, 2101;
- c) Zhao C. E., Gai P., Song R., Chen Y., Zhang J., Zhu J. J., Chem. Soc. Rev. 2017, 46, 1545. - PubMed
MeSH terms
Substances
Supplementary concepts
Grants and funding
- 2018YFA0901300/National Key Research and Development Program of China
- SKLBEE2023004/Open Project Funding of the State Key Laboratory of Biocatalysis and Enzyme Engineering
- 22378305/National Natural Science Foundation of China
- 32071411/National Natural Science Foundation of China
- 32001034/National Natural Science Foundation of China
- 32060017/National Natural Science Foundation of China
- Foundation of Key Laboratory of Agro-Products Processing and Storage
- S2023KFKT-18/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, P. R. China
- 2022JQ10/Inner Mongolia Scientific Research Fund for Outstanding Youth Scholar
- 2024-JieBangGuaShuai-She-1/Hohhot Science and Technology Plan Project
LinkOut - more resources
Full Text Sources
Research Materials