Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1979 Sep;210(3):422-8.

Comparison of the effects of the isomers of amphetamine, methylphenidate and deoxypipradrol on the uptake of l-[3H]norepinephrine and [3H]dopamine by synaptic vesicles from rat whole brain, striatum and hypothalamus

  • PMID: 39160
Comparative Study

Comparison of the effects of the isomers of amphetamine, methylphenidate and deoxypipradrol on the uptake of l-[3H]norepinephrine and [3H]dopamine by synaptic vesicles from rat whole brain, striatum and hypothalamus

R M Ferris et al. J Pharmacol Exp Ther. 1979 Sep.

Abstract

The ATP-Mg++-dependent uptake of [3H]dopamine and l-[3H]norepinephrine into purified synaptic vesicles of whole rat brain, rat striatum and rat hypothalamus was inhibited 10-fold more effectively by S-(+)-amphetamine as compared to its corresponding (R-(-)-enantiomer. In contrast, S-(+)-deoxypipradrol and its R-(-)-enantiomer were approximately equipotent inhibitors of 3H-amine uptake into these synaptic vesicular preparations. The 1R:2R-methylphenidate was twice as potent as its 1R:2S-enantiomer as an inhibitor of 3H-catecholamine uptake. These data suggest that the receptor sites on the amine pumps present in the membranes of all three vesicular preparations are similar in so far as they are all sensitive to the stereochemical configuration around the alpha-carbon of amphetamine but are not sensitive to the stereochemical configuration around the analogous carbon of deoxypipradrol and methylphenidate. These observations are the reverse of those previously observed for the phenethylamine pumps present in peripheral and central neuronal membranes.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources