Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Nov;47(11):e14008.
doi: 10.1111/jfd.14008. Epub 2024 Aug 19.

Assessment of dietary yeast-based additives for cultured catfish and tilapia health

Affiliations

Assessment of dietary yeast-based additives for cultured catfish and tilapia health

Guillaume Cacot et al. J Fish Dis. 2024 Nov.

Abstract

Channel catfish (Ictalurus punctatus) and Nile tilapia (Oreochromis niloticus) are two aquaculture species of great importance. Intensive production is often hindered by poor growth performance and disease mortality. The aim of this study was to evaluate the potential of a commercial fermented yeast product, DVAQUA, on channel catfish and Nile tilapia growth performance metrics and disease resistance. Channel catfish and Nile tilapia were fed practical diets supplemented with 0%, 0.1% or 0.4% of DVAQUA over approximately 2-month feeding periods in recirculation aquaculture systems. To assess the potential of the postbiotic against common aquaculture pathogens, juvenile catfish were subsequently challenged by immersion with Edwardsiella ictaluri S97-773 or virulent Aeromonas hydrophila ML09-119. Nile tilapia juveniles were challenged by injection with Streptococcus iniae ARS-98-60. Serum lysozyme activity, blood chemistry and growth metrics were measured at the end of the feeding period, but no differences were observed across the different metrics, except for survival. For the pathogen challenges, there were no differences in endpoint mortality for channel catfish with either pathogen (p > .05). In contrast, Nile tilapia survivability to S. iniae infection increased proportionally to the inclusion of DVAQUA (p = .005). Changes to sera lysozyme activity were also noted in the tilapia trial, with a reduction of activity in the fish fed the 0.4% DVAQUA diet compared to the control diet (p = .031). Expression profiles of proinflammatory genes and antibodies were also found to be modulated in channel catfish fed the postbiotic, indicating some degree of protective response. These results suggest that this postbiotic may be beneficial in protecting Nile tilapia against S. iniae infection by influencing immune parameters and additional research is needed to evaluate the potential of this DVAQUA for improving catfish health and disease control.

Keywords: aquaculture; gene expression; immunostimulant; postbiotics; prophylactic.

PubMed Disclaimer

References

REFERENCES

    1. Abdelrahman, H. A., Hemstreet, W. G., Roy, L. A., Hanson, T. R., Beck, B. H., & Kelly, A. M. (2023). Epidemiology and economic impact of disease‐related losses on commercial catfish farms: A seven‐year case study from Alabama, USA. Aquaculture, 566, 739206. https://doi.org/10.1016/j.aquaculture.2022.739206
    1. Abdel‐Tawwab, M., Adeshina, I., & Issa, Z. A. (2020). Antioxidants and immune responses, resistance to Aspergilus flavus infection, and growth performance of Nile tilapia, Oreochromis niloticus, fed diets supplemented with yeast, Saccharomyces serevisiae. Animal Feed Science and Technology, 263, 114484. https://doi.org/10.1016/j.anifeedsci.2020.114484
    1. Abu‐Elala, N., Marzouk, M., & Moustafa, M. (2013). Use of different Saccharomyces cerevisiae biotic forms as immune‐modulator and growth promoter for Oreochromis niloticus challenged with some fish pathogens. International Journal of Veterinary Science and Medicine, 1(1), 21–29. https://doi.org/10.1016/j.ijvsm.2013.05.001
    1. Abu‐Elala, N. M., Younis, N. A., AbuBakr, H. O., Ragaa, N. M., Borges, L. L., & Bonato, M. A. (2018). Efficacy of dietary yeast cell wall supplementation on the nutrition and immune response of Nile tilapia. Egyptian Journal of Aquatic Research, 44, 333–341. https://doi.org/10.1016/j.ejar.2018.11.001
    1. Adeoye, A. A., Obasa, S. O., Fawole, F. J., Wan, A. H. L., & Davies, S. J. (2020). Dietary supplementation of autolysed yeast enhances growth, liver functionality and intestinal morphology in African catfish. Aquaculture Nutrition, 26, 772–780. doi:10.1111/anu.13036

MeSH terms

LinkOut - more resources