Independent effects of transcranial direct current stimulation and social influence on pain
- PMID: 39167466
- PMCID: PMC11649493
- DOI: 10.1097/j.pain.0000000000003338
Independent effects of transcranial direct current stimulation and social influence on pain
Abstract
Transcranial direct current stimulation (tDCS) is a noninvasive neuromodulatory technique with the potential to provide pain relief. However, tDCS effects on pain are variable across existing studies, possibly related to differences in stimulation protocols and expectancy effects. We investigated the independent and joint effects of contralateral motor cortex tDCS (anodal vs cathodal) and socially induced expectations (analgesia vs hyperalgesia) about tDCS on thermal pain. We employed a double-blind, randomized 2 × 2 factorial cross-over design, with 5 sessions per participant on separate days. After calibration in Session 1, Sessions 2 to 5 crossed anodal or cathodal tDCS (20 minutes 2 mA) with socially induced analgesic or hyperalgesic expectations, with 6 to 7 days between the sessions. The social manipulation involved videos of previous "participants" (confederates) describing tDCS as inducing a low-pain state ("analgesic expectancy") or hypersensitivity to sensation ("hyperalgesic expectancy"). Anodal tDCS reduced pain compared with cathodal stimulation (F(1,19.9) = 19.53, P < 0.001, Cohen d = 0.86) and analgesic expectancy reduced pain compared with hyperalgesic expectancy (F(1,19.8) = 5.62, P = 0.027, Cohen d = 0.56). There was no significant interaction between tDCS and social expectations. Effects of social suggestions were related to expectations, whereas tDCS effects were unrelated to expectancies. The observed additive effects provide novel evidence that tDCS and socially induced expectations operate through independent processes. They extend clinical tDCS studies by showing tDCS effects on controlled nociceptive pain independent of expectancy effects. In addition, they show that social suggestions about neurostimulation effects can elicit potent placebo effects.
Copyright © 2024 International Association for the Study of Pain.
Conflict of interest statement
Conflict of Interest Statement
The authors have no conflict of interest to declare.
Similar articles
-
Non-invasive brain stimulation techniques for chronic pain.Cochrane Database Syst Rev. 2018 Mar 16;3(3):CD008208. doi: 10.1002/14651858.CD008208.pub4. Cochrane Database Syst Rev. 2018. Update in: Cochrane Database Syst Rev. 2018 Apr 13;4:CD008208. doi: 10.1002/14651858.CD008208.pub5. PMID: 29547226 Free PMC article. Updated.
-
Non-invasive brain stimulation techniques for chronic pain.Cochrane Database Syst Rev. 2018 Apr 13;4(4):CD008208. doi: 10.1002/14651858.CD008208.pub5. Cochrane Database Syst Rev. 2018. PMID: 29652088 Free PMC article.
-
High-definition transcranial direct-current stimulation of left primary motor cortices modulates beta and gamma oscillations serving motor control.J Physiol. 2025 Mar;603(6):1627-1644. doi: 10.1113/JP287085. Epub 2025 Feb 26. J Physiol. 2025. PMID: 40009440
-
Non-pharmacological interventions for improving language and communication in people with primary progressive aphasia.Cochrane Database Syst Rev. 2024 May 29;5(5):CD015067. doi: 10.1002/14651858.CD015067.pub2. Cochrane Database Syst Rev. 2024. PMID: 38808659 Free PMC article.
-
Transcranial direct current stimulation (tDCS) for improving activities of daily living, and physical and cognitive functioning, in people after stroke.Cochrane Database Syst Rev. 2016 Mar 21;3(3):CD009645. doi: 10.1002/14651858.CD009645.pub3. Cochrane Database Syst Rev. 2016. Update in: Cochrane Database Syst Rev. 2020 Nov 11;11:CD009645. doi: 10.1002/14651858.CD009645.pub4. PMID: 26996760 Free PMC article. Updated.
Cited by
-
Expectations and transcranial direct current stimulation-induced brain modulation: independent and additive effects on experimental pain.Pain. 2025 Jan 1;166(1):3-4. doi: 10.1097/j.pain.0000000000003339. Epub 2024 Aug 15. Pain. 2025. PMID: 39167462 No abstract available.
References
-
- Agboada D, Mosayebi-Samani M, Kuo M-F, Nitsche MA. Induction of long-term potentiation-like plasticity in the primary motor cortex with repeated anodal transcranial direct current stimulation - Better effects with intensified protocols? Brain Stimul 2020;13:987–997. - PubMed
-
- Ahmadizadeh MJ, Rezaei M, Fitzgerald PB. Transcranial direct current stimulation (tDCS) for post-traumatic stress disorder (PTSD): A randomized, double-blinded, controlled trial. Brain Res Bull 2019;153:273–278. - PubMed
-
- Ahn H, Sorkpor S, Miao H, Zhong C, Jorge R, Park L, Abdi S, Cho RY. Home-based self-administered transcranial direct current stimulation in older adults with knee osteoarthritis pain: An open-label study. J Clin Neurosci 2019;66:61–65. - PubMed
-
- Antal A, Alekseichuk I, Bikson M, Brockmöller J, Brunoni AR, Chen R, Cohen LG, Dowthwaite G, Ellrich J, Flöel A, Fregni F, George MS, Hamilton R, Haueisen J, Herrmann CS, Hummel FC, Lefaucheur JP, Liebetanz D, Loo CK, McCaig CD, Miniussi C, Miranda PC, Moliadze V, Nitsche MA, Nowak R, Padberg F, Pascual-Leone A, Poppendieck W, Priori A, Rossi S, Rossini PM, Rothwell J, Rueger MA, Ruffini G, Schellhorn K, Siebner HR, Ugawa Y, Wexler A, Ziemann U, Hallett M, Paulus W. Low intensity transcranial electric stimulation: Safety, ethical, legal regulatory and application guidelines. Clin Neurophysiol 2017;128:1774–1809. - PMC - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Medical