Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Jan;72(1):227-237.
doi: 10.1109/TBME.2024.3446806. Epub 2025 Jan 15.

A Particle Swarm Optimized Independence Estimator for Blind Source Separation of Neurophysiological Time Series

A Particle Swarm Optimized Independence Estimator for Blind Source Separation of Neurophysiological Time Series

Agnese Grison et al. IEEE Trans Biomed Eng. 2025 Jan.

Abstract

The decomposition of neurophysiological recordings into their constituent neural sources is of major importance to a diverse range of neuroscientific fields and neuroengineering applications. The advent of high density electrode probes and arrays has driven a major need for novel semi-automated and automated blind source separation methodologies that take advantage of the increased spatial resolution and coverage these new devices offer. Independent component analysis (ICA) offers a principled theoretical framework for such algorithms, but implementation inefficiencies often drive poor performance in practice, particularly for sparse sources. Here we observe that the use of a single non-linear optimization function to identify spiking sources with ICA often has a detrimental effect that precludes the recovery and correct separation of all spiking sources in the signal. We go on to propose a projection-pursuit ICA algorithm designed specifically for spiking sources, which uses a particle swarm methodology to adaptively traverse a polynomial family of non-linearities approximating the asymmetric cumulants of the sources. We robustly prove state-of-the-art decomposition performance on recordings from high density intramuscular probes and demonstrate how the particle swarm quickly finds optimal contrast non-linearities across a range of neurophysiological datasets.

PubMed Disclaimer

References

Publication types

LinkOut - more resources