Antidiabetic and antioxidant properties of Boswellia sacra oleo-gum in streptozotocin-induced diabetic rats
- PMID: 39167989
- PMCID: PMC11381996
- DOI: 10.1016/j.jaim.2024.101014
Antidiabetic and antioxidant properties of Boswellia sacra oleo-gum in streptozotocin-induced diabetic rats
Abstract
Background: Diabetes is a metabolic disorder requiring the administration of insulin or other oral hypoglycemic medicines. Although metformin is a popular prescription for type 2 diabetes, long-term use of chemotherapy-based diabetes medications can be hazardous. As a result, novel plant medicines with a high concentration of bioactive molecules, no harmful side effects, and potent pharmacological effects must be found. Edible Boswellia sacra (B. sacra) Flueck oleo-gum resin is widely utilized to treat many clinical diseases in traditional Arab, Chinese, African, and Ayurvedic medicine.
Objective: The goal of this study was to examine the possible therapeutic benefits of several B. sacra oleo-gum resin extracts on rat streptozotocin (STZ)-induced hyperglycemia (Type II).
Materials and methods: For 29 days, hyperglycemic rats are given either metformin (the reference drug; 250 mg/kg body weight per day) or several B. sacra extracts (ethanol, methanol, hydrodistilled, ethyl acetate, and acetone extracts) at doses of 200 or 400 mg/kg/day. Blood glucose levels and body weights were measured before the initiation and at 7, 11, 16, 22, and 29 days after oral treatment. Furthermore, an oral glucose tolerance test (OGTT) was carried out. At the end of the study, the rats were euthanized, and blood samples were obtained to evaluate cytokines (interleukin (IL-)2 and IL-8), reduced glutathione (GSH), superoxide dismutase (SOD), and serum insulin levels. The pancreas and liver tissues were rapidly excised, washed, fixed, and kept in a 10% formalin buffer for histological examination.
Results: B. sacra's ethanolic extract had the greatest concentration of total pentacyclic triterpenic acid (PTA) (391.52 mg/g) in comparison to the other extracts. The lower dose of B. sacra ethanol extract, 200 mg/kg/day, reduces blood glucose levels more efficiently than the higher dose of 400 mg/kg/day. In a 180-min OGTT, diabetic rats given ethanol extract (200 mg/kg) performed no better than control rats and even outperformed those given the reference medication metformin. Additionally, ethanol extract (200 mg/kg)- or metformin-treated diabetic rats gained weight. This was associated with a significant (p < 0.05) decrease in serum levels of IL-2 and IL-8, a reduction in oxidative stress as evidenced by a significant (p < 0.05) increase in SOD and GSH compared to the untreated diabetic group, and a significant (p < 0.05) increase in serum insulin levels compared to normal plasma rat levels. These discoveries, which were eventually confirmed by histochemical assays, indicated that the ethanol extract of B. sacra greatly enhanced the cellular architecture of pancreatic and liver cells.
Conclusion: The present investigation indicates that the ethanol extract of B. sacra oleo-gum resin, which contains a high proportion of acetyl-β-boswellic acid (β-ABA) and acetyl-11-keto-β-boswellic acid (AKBA), possesses antihyperglycemic, anti-inflammatory, and anti-oxidant properties for the first time to our knowledge. Additionally, it restores hepatic cells in STZ-induced diabetic rats and protects the pancreas against oxidative damage. Thus, the current study's results give a scientific rationale for the use of B. sacra in the medical management of diabetes and associated complications. More investigation into the metabolic profiles of these extracts must be conducted to establish the precise mechanism of action of the ethanol extract.
Keywords: Antioxidants; Boswellia sacra gum resin; Diabetes; Hypoglycemic agents.
Copyright © 2024 The Authors. Published by Elsevier B.V. All rights reserved.
Conflict of interest statement
Conflict of Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper
Figures



Similar articles
-
Repeated 28-DAY oral dose study on Boswellia sacra oleo gum resin extract for testicular toxicity in rats.J Ethnopharmacol. 2020 Aug 10;258:112890. doi: 10.1016/j.jep.2020.112890. Epub 2020 Apr 21. J Ethnopharmacol. 2020. PMID: 32330512
-
Phytochemical Analysis and Anti-cancer Investigation of Boswellia serrata Bioactive Constituents In Vitro.Asian Pac J Cancer Prev. 2015;16(16):7179-88. doi: 10.7314/apjcp.2015.16.16.7179. Asian Pac J Cancer Prev. 2015. PMID: 26514509
-
Quantitative Determination of 3-O-Acetyl-11-Keto-βBoswellic Acid (AKBA) and Other Boswellic Acids in Boswellia sacra Flueck (syn. B. carteri Birdw) and Boswellia serrata Roxb.Molecules. 2016 Oct 6;21(10):1329. doi: 10.3390/molecules21101329. Molecules. 2016. PMID: 27782055 Free PMC article.
-
Boswellic extracts and 11-keto-ß-boswellic acids prevent type 1 and type 2 diabetes mellitus by suppressing the expression of proinflammatory cytokines.Phytomedicine. 2019 Oct;63:153002. doi: 10.1016/j.phymed.2019.153002. Epub 2019 Jun 28. Phytomedicine. 2019. PMID: 31301539 Review.
-
Taxonomical Investigation, Chemical Composition, Traditional Use in Medicine, and Pharmacological Activities of Boswellia sacra Flueck.Evid Based Complement Alternat Med. 2022 Feb 18;2022:8779676. doi: 10.1155/2022/8779676. eCollection 2022. Evid Based Complement Alternat Med. 2022. PMID: 35222678 Free PMC article. Review.
References
-
- World Health Organization . 2016. Global report on diabetes.https://www.who.int/publications/i/item/9789241565257 Geneva.
-
- World Health Organization Update from the Seventy-fourth world health Assembly – 27 May 2021. 2021. https://www.who.int/news/item/27-05-2021-update-from-the-seventy-fourth-...
-
- Mishra A.P., Sharifi-Rad M., Shariati M.A., Mabkhot Y.N., Al-Showiman S.S., Rauf A., et al. Bioactive compounds and health benefits of edible Rumex species-a review. Cell Mol Biol. 2018;64:27–34. (Noisy Le Grand) - PubMed
LinkOut - more resources
Full Text Sources
Research Materials