Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Nov 15:951:175611.
doi: 10.1016/j.scitotenv.2024.175611. Epub 2024 Aug 19.

Hematite nanomaterial from a tropical freshwater ecosystem: Geological, environmental, and industrial implications

Affiliations

Hematite nanomaterial from a tropical freshwater ecosystem: Geological, environmental, and industrial implications

Arya Jayan et al. Sci Total Environ. .

Abstract

Synthetic hematite (Fe2O3) nanoparticles are extensively explored for medicine, optics, and environmental remediation. However, natural iron nanoparticles in a freshwater ecosystem have not been well characterized. Here we report the presence of natural iron nanoparticles in a tropical freshwater ecosystem in southern India. These iron nanoparticles that exist as slime in the natural water system were characterized through a multiproxy investigation involving Field-Emission Scanning Electron Microscopy (FE-SEM), X-ray Diffraction (XRD), X-ray Fluorescence (XRF), X-ray Photoelectron Spectroscopy (XPS), and Raman spectroscopy and BET analyses. These nanoparticles exist as amorphous hematite (Fe2O3), with the XRD peaks matching that of the iron arsenate compound. Fe2O3 occurs as mesoporous hollow microspheres with a size range of 14.97 to 61.3 nm and a surface area of 48.45m2/g. Further, the identification of Bacillus cereus in the slime suggests its role in iron sequestration, indicating a biogeochemical origin, which we infer is a particularly common phenomenon in tropical river basins where lateritic soils prevail. This study is the first to describe natural iron nanoparticles in a tropical freshwater ecosystem. It identifies their amorphous hematite structure and biogeochemical origin, offering new insights into their ecological roles and potential applications. This discovery presents an opportunity for utilizing this slime as an important source of hematite nanomaterials, with potential industrial applications.

Keywords: Bacillus cereus; Environmental remediation; Iron contamination; Natural hematite; Surface water; Tropical climate.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

LinkOut - more resources