Prediction of the treatment effect of FLASH radiotherapy with synchrotron radiation from the Circular Electron-Positron Collider (CEPC)
- PMID: 39172092
- PMCID: PMC11371022
- DOI: 10.1107/S1600577524006878
Prediction of the treatment effect of FLASH radiotherapy with synchrotron radiation from the Circular Electron-Positron Collider (CEPC)
Abstract
The Circular Electron-Positron Collider (CEPC) in China can also work as an excellent powerful synchrotron light source, which can generate high-quality synchrotron radiation. This synchrotron radiation has potential advantages in the medical field as it has a broad spectrum, with energies ranging from visible light to X-rays used in conventional radiotherapy, up to several megaelectronvolts. FLASH radiotherapy is one of the most advanced radiotherapy modalities. It is a radiotherapy method that uses ultra-high dose rate irradiation to achieve the treatment dose in an instant; the ultra-high dose rate used is generally greater than 40 Gy s-1, and this type of radiotherapy can protect normal tissues well. In this paper, the treatment effect of CEPC synchrotron radiation for FLASH radiotherapy was evaluated by simulation. First, a Geant4 simulation was used to build a synchrotron radiation radiotherapy beamline station, and then the dose rate that the CEPC can produce was calculated. A physicochemical model of radiotherapy response kinetics was then established, and a large number of radiotherapy experimental data were comprehensively used to fit and determine the functional relationship between the treatment effect, dose rate and dose. Finally, the macroscopic treatment effect of FLASH radiotherapy was predicted using CEPC synchrotron radiation through the dose rate and the above-mentioned functional relationship. The results show that the synchrotron radiation beam from the CEPC is one of the best beams for FLASH radiotherapy.
Keywords: CEPC; Circular Electron–Positron Collider; FLASH radiotherapy; simulations; synchrotron radiation; treatment effect.
open access.
Figures







Similar articles
-
Adaptation and dosimetric commissioning of a synchrotron-based proton beamline for FLASH experiments.Phys Med Biol. 2022 Aug 5;67(16):10.1088/1361-6560/ac8269. doi: 10.1088/1361-6560/ac8269. Phys Med Biol. 2022. PMID: 35853442 Free PMC article.
-
Design and validation of a synchrotron proton beam line for FLASH radiotherapy preclinical research experiments.Med Phys. 2022 Jan;49(1):497-509. doi: 10.1002/mp.15370. Epub 2021 Dec 10. Med Phys. 2022. PMID: 34800037 Free PMC article.
-
Very high-energy electron dose calculation using the Fermi-Eyges theory of multiple scattering and a simplified pencil beam model.Med Phys. 2023 Dec;50(12):8009-8022. doi: 10.1002/mp.16697. Epub 2023 Sep 20. Med Phys. 2023. PMID: 37730956
-
FLASH radiotherapy with photon beams.Med Phys. 2022 Mar;49(3):2055-2067. doi: 10.1002/mp.15222. Epub 2021 Nov 7. Med Phys. 2022. PMID: 34519042 Review.
-
Effects of pulsed, spatially fractionated, microscopic synchrotron X-ray beams on normal and tumoral brain tissue.Mutat Res. 2010 Apr-Jun;704(1-3):160-6. doi: 10.1016/j.mrrev.2009.12.003. Epub 2009 Dec 23. Mutat Res. 2010. PMID: 20034592 Review.
References
-
- Agostinelli, S., Allison, J., Amako, K., Apostolakis, J., Araujo, H., Arce, P., Asai, M., Axen, D., Banerjee, S., Barrand, G., Behner, F., Bellagamba, L., Boudreau, J., Broglia, L., Brunengo, A., Burkhardt, H., Chauvie, S., Chuma, J., Chytracek, R., Cooperman, G., Cosmo, G., Degtyarenko, P., Dell’Acqua, A., Depaola, G., Dietrich, D., Enami, R., Feliciello, A., Ferguson, C., Fesefeldt, H., Folger, G., Foppiano, F., Forti, A., Garelli, S., Giani, S., Giannitrapani, R., Gibin, D., Gómez Cadenas, J. J., González, I., Gracia Abril, G., Greeniaus, G., Greiner, W., Grichine, V., Grossheim, A., Guatelli, S., Gumplinger, P., Hamatsu, R., Hashimoto, K., Hasui, H., Heikkinen, A., Howard, A., Ivanchenko, V., Johnson, A., Jones, F. W., Kallenbach, J., Kanaya, N., Kawabata, M., Kawabata, Y., Kawaguti, M., Kelner, S., Kent, P., Kimura, A., Kodama, T., Kokoulin, R., Kossov, M., Kurashige, H., Lamanna, E., Lampén, T., Lara, V., Lefebure, V., Lei, F., Liendl, M., Lockman, W., Longo, F., Magni, S., Maire, M., Medernach, E., Minamimoto, K., Mora de Freitas, P., Morita, Y., Murakami, K., Nagamatu, M., Nartallo, R., Nieminen, P., Nishimura, T., Ohtsubo, K., Okamura, M., O’Neale, S., Oohata, Y., Paech, K., Perl, J., Pfeiffer, A., Pia, M. G., Ranjard, F., Rybin, A., Sadilov, S., Di Salvo, E., Santin, G., Sasaki, T., Savvas, N., Sawada, Y., Scherer, S., Sei, S., Sirotenko, V., Smith, D., Starkov, N., Stoecker, H., Sulkimo, J., Takahata, M., Tanaka, S., Tcherniaev, E., Safai Tehrani, E., Tropeano, M., Truscott, P., Uno, H., Urban, L., Urban, P., Verderi, M., Walkden, A., Wander, W., Weber, H., Wellisch, J. P., Wenaus, T., Williams, D. C., Wright, D., Yamada, T., Yoshida, H. & Zschiesche, D. (2003). Nucl. Instrum. Methods Phys. Res. A, 506, 250–303.
-
- Bourhis, J., Sozzi, W. J., Jorge, P. G., Gaide, O., Bailat, C., Duclos, F., Patin, D., Ozsahin, M., Bochud, F., Germond, J.-F., Moeckli, R. & Vozenin, M. C. (2019). Radiother. Oncol.139, 18–22. - PubMed
-
- CEPC Study Group (2018). arXiv:1809.00285.
MeSH terms
LinkOut - more resources
Full Text Sources