Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Sep 4;146(35):24233-24237.
doi: 10.1021/jacs.4c04314. Epub 2024 Aug 23.

Aminomethyl Salicylaldehydes Lock onto a Surface Lysine by Forming an Extended Intramolecular Hydrogen Bond Network

Affiliations

Aminomethyl Salicylaldehydes Lock onto a Surface Lysine by Forming an Extended Intramolecular Hydrogen Bond Network

Jacqueline Weaver et al. J Am Chem Soc. .

Abstract

The development of electrophilic ligands that rapidly modify specific lysine residues remains a major challenge. Salicylaldehyde-based inhibitors have been reported to form stable imine adducts with the catalytic lysine of protein kinases. However, the targeted lysine in these examples is buried in a hydrophobic environment. A key unanswered question is whether this strategy can be applied to a lysine on the surface of a protein, where rapid hydrolysis of the resulting salicylaldimine is more likely. Here, we describe a series of aminomethyl-substituted salicylaldehydes that target a fully solvated lysine on the surface of the ATPase domain of Hsp90. By systematically varying the orientation of the salicylaldehyde, we discovered ligands with long residence times, the best of which engages Hsp90 in a quasi-irreversible manner. Crystallographic analysis revealed a daisy-chain network of intramolecular hydrogen bonds in which the salicylaldimine is locked into position by the adjacent piperidine linker. This study highlights the potential of aminomethyl salicylaldehydes to generate conformationally stabilized, hydrolysis-resistant imines, even when the targeted lysine is far from the ligand binding site and is exposed to bulk solvent.

PubMed Disclaimer

LinkOut - more resources