Advances and future directions in ROS1 fusion-positive lung cancer
- PMID: 39177972
- PMCID: PMC11546726
- DOI: 10.1093/oncolo/oyae205
Advances and future directions in ROS1 fusion-positive lung cancer
Abstract
ROS1 gene fusions are an established oncogenic driver comprising 1%-2% of non-small cell lung cancer (NSCLC). Successful targeting of ROS1 fusion oncoprotein with oral small-molecule tyrosine kinase inhibitors (TKIs) has revolutionized the treatment landscape of metastatic ROS1 fusion-positive (ROS1+) NSCLC and transformed outcomes for patients. The preferred Food and Drug Administration-approved first-line therapies include crizotinib, entrectinib, and repotrectinib, and currently, selection amongst these options requires consideration of the systemic and CNS efficacy, tolerability, and access to therapy. Of note, resistance to ROS1 TKIs invariably develops, limiting the clinical benefit of these agents and leading to disease relapse. Progress in understanding the molecular mechanisms of resistance has enabled the development of numerous next-generation ROS1 TKIs, which achieve broader coverage of ROS1 resistance mutations and superior CNS penetration than first-generation TKIs, as well as other therapeutic strategies to address TKI resistance. The approach to subsequent therapy depends on the pace and pattern of progressive disease on the initial ROS1 TKI and, if known, the mechanisms of TKI resistance. Herein, we describe a practical approach for the selection of initial and subsequent therapies for metastatic ROS1+ NSCLC based on these clinical considerations. Additionally, we explore the evolving evidence for the optimal treatment of earlier-stage, non-metastatic ROS1+ NSCLC, while, in parallel, highlighting future research directions with the goal of continuing to build on the tremendous progress in the management of ROS1+ NSCLC and ultimately improving the longevity and well-being of people living with this disease.
Keywords: ROS1; drug resistance; non–small cell lung cancer; targeted therapy; tyrosine kinase inhibitor.
© The Author(s) 2024. Published by Oxford University Press.
Conflict of interest statement
M.C.B. has no disclosures. J.L.S. has received research funding from Gilead. J.J.L. has served as a compensated consultant for Genentech, C4 Therapeutics, Blueprint Medicines, Nuvalent, Bayer, Elevation Oncology, Novartis, Mirati Therapeutics, AnHeart Therapeutics, Takeda, CLaiM Therapeutics, Ellipses, AstraZeneca, Bristol Myers Squibb, Daiichi Sankyo, Yuhan, Merus, Regeneron, Pfizer, and Turning Point Therapeutics; has received institutional research funds from Hengrui Therapeutics, Turning Point Therapeutics, Neon Therapeutics, Relay Therapeutics, Bayer, Elevation Oncology, Roche, Linnaeus Therapeutics, Nuvalent, and Novartis; and travel support from Pfizer and Merus.
Figures



References
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Medical