Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Aug 23:12:e55254.
doi: 10.2196/55254.

Establishing a Consensus-Based Framework for the Use of Wearable Activity Trackers in Health Care: Delphi Study

Affiliations

Establishing a Consensus-Based Framework for the Use of Wearable Activity Trackers in Health Care: Delphi Study

Kimberley Szeto et al. JMIR Mhealth Uhealth. .

Abstract

Background: Physical activity (PA) plays a crucial role in health care, providing benefits in the prevention and management of many noncommunicable diseases. Wearable activity trackers (WATs) provide an opportunity to monitor and promote PA in various health care settings.

Objective: This study aimed to develop a consensus-based framework for the optimal use of WATs in health care.

Methods: A 4-round Delphi survey was conducted, involving a panel (n=58) of health care professionals, health service managers, and researchers. Round 1 used open-response questions to identify overarching themes. Rounds 2 and 3 used 9-point Likert scales to refine participants' opinions and establish consensus on key factors related to WAT use in health care, including metrics, device characteristics, clinical populations and settings, and software considerations. Round 3 also explored barriers and mitigating strategies to WAT use in clinical settings. Insights from Rounds 1-3 informed a draft checklist designed to guide a systematic approach to WAT adoption in health care. In Round 4, participants evaluated the draft checklist's clarity, utility, and appropriateness.

Results: Participation rates for rounds 1 to 4 were 76% (n=44), 74% (n=43), 74% (n=43), and 66% (n=38), respectively. The study found a strong interest in using WATs across diverse clinical populations and settings. Key metrics (step count, minutes of PA, and sedentary time), device characteristics (eg, easy to charge, comfortable, waterproof, simple data access, and easy to navigate and interpret data), and software characteristics (eg, remote and wireless data access, access to multiple patients' data) were identified. Various barriers to WAT adoption were highlighted, including device-related, patient-related, clinician-related, and system-level issues. The findings culminated in a 12-item draft checklist for using WATs in health care, with all 12 items endorsed for their utility, clarity, and appropriateness in Round 4.

Conclusions: This study underscores the potential of WATs in enhancing patient care across a broad spectrum of health care settings. While the benefits of WATs are evident, successful integration requires addressing several challenges, from technological developments to patient education and clinician training. Collaboration between WAT manufacturers, researchers, and health care professionals will be pivotal for implementing WATs in the health care sector.

Keywords: exercise; health care; management; monitor; physical activity; prevention; promote; sedentary behavior; support; survey; tracker; utility; wearable; wearable activity tracker; wearable technology; wearable tracker; wearables.

PubMed Disclaimer

Conflict of interest statement

Conflicts of Interest: None declared.

Figures

Figure 1
Figure 1
Overview of Delphi process. WAT: wearable activity tracker; CFIR: Consolidated Framework for Implementation Research.

References

    1. Katzmarzyk PT, Friedenreich C, Shiroma EJ, Lee I. Physical inactivity and non-communicable disease burden in low-income, middle-income and high-income countries. Br J Sports Med. 2022;56(2):101–106. doi: 10.1136/bjsports-2020-103640.bjsports-2020-103640 - DOI - PMC - PubMed
    1. Bull FC, Al-Ansari SS, Biddle S, Borodulin K, Buman MP, Cardon G, Carty C, Chaput J, Chastin S, Chou R, Dempsey PC, DiPietro L, Ekelund U, Firth J, Friedenreich CM, Garcia L, Gichu M, Jago R, Katzmarzyk PT, Lambert E, Leitzmann M, Milton K, Ortega FB, Ranasinghe C, Stamatakis E, Tiedemann A, Troiano RP, van der Ploeg HP, Wari V, Willumsen JF. World health organization 2020 guidelines on physical activity and sedentary behaviour. Br J Sports Med. 2020;54(24):1451–1462. doi: 10.1136/bjsports-2020-102955. http://bjsm.bmj.com/lookup/pmidlookup?view=long&pmid=33239350 bjsports-2020-102955 - DOI - PMC - PubMed
    1. Gill TM, Gahbauer EA, Han L, Allore HG. The relationship between intervening hospitalizations and transitions between frailty states. J Gerontol A Biol Sci Med Sci. 2011;66(11):1238–1243. doi: 10.1093/gerona/glr142. https://europepmc.org/abstract/MED/21852286 glr142 - DOI - PMC - PubMed
    1. Brown CJ, Friedkin RJ, Inouye SK. Prevalence and outcomes of low mobility in hospitalized older patients. J Am Geriatr Soc. 2004;52(8):1263–1270. doi: 10.1111/j.1532-5415.2004.52354.x.JGS52354 - DOI - PubMed
    1. Gill TM, Allore HG, Holford TR, Guo Z. Hospitalization, restricted activity, and the development of disability among older persons. JAMA. 2004;292(17):2115–2124. doi: 10.1001/jama.292.17.2115.292/17/2115 - DOI - PubMed

LinkOut - more resources