Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Nov:134:155961.
doi: 10.1016/j.phymed.2024.155961. Epub 2024 Aug 17.

Exploring the anti-ovarian aging mechanism of He's Yangchao formula: Insights from multi-omics analysis in naturally aged mice

Affiliations

Exploring the anti-ovarian aging mechanism of He's Yangchao formula: Insights from multi-omics analysis in naturally aged mice

Liuqing Yang et al. Phytomedicine. 2024 Nov.

Abstract

Background: The rapid acceleration of female reproductive aging has become a major public health concern. He's Yangchao formula (HSYC), a compound comprising eight herbs, has demonstrated efficacy in enhancing ovarian function. Thus, an in-depth study of its anti-ovarian aging mechanism is required.

Purpose: To evaluate the anti-ovarian aging effect of HSYC in naturally aged mice and investigate the underlying mechanism by analyzing the gut microbiota (GM), metabolome, and transcriptome.

Methods: Young and advanced maternal age (AMA) mice were selected for this study. Hematoxylin and eosin staining, fluorescence staining, western blotting, and qPCR analyses were used to detect the phenotypes associated with ovarian aging. Subsequently, analyses of the GM, transcriptome, and metabolome analyses were performed to explore the potential mechanisms of action of HSYC. Finally, in vivo and in vitro experiments were performed to verify potential therapeutic mechanisms.

Results: HSYC promoted follicular development in AMA mice and ameliorated age-related mitochondrial dysfunction, apoptosis, and defects in DNA damage repair. GM analysis revealed that HSYC treatment significantly increased the abundance of Akkermansia and Turicibacter. Transcriptome and metabolome analyses showed that HSYC might mitigate ovarian aging by regulating metabolic pathways, amino acid metabolism, glutathione metabolism, and the synthesis of pantothenic acid and coenzyme A. Combined transcriptomic and metabolomic analyses identified the glutathione metabolic pathway as the key pathway through which HSYC counteracts ovarian aging. Additional experimental verification confirmed that HSYC upregulated the glutathione metabolic genes GPX8, GSTA1, and GSTA4, increased glutathione-related products (GSH), and reduced ROS levels.

Conclusions: HSYC exerts beneficial therapeutic effects on ovarian aging by regulating multiple endogenous metabolites, targets, and metabolic pathways, with an emphasis on its anti-ovarian aging effects through the glutathione metabolic pathway. These findings underscore the innovative potential of HSYC in addressing ovarian aging and offer a novel therapeutic approach that targets multiple biological pathways to improve the reproductive health of women with AMA..

Keywords: Multi-omics analysis; Reproduction age; Traditional Chinese medicine; glutathione metabolic pathway.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Substances

LinkOut - more resources