Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Dec:180:106640.
doi: 10.1016/j.neunet.2024.106640. Epub 2024 Aug 19.

Interplay between depth and width for interpolation in neural ODEs

Affiliations
Free article

Interplay between depth and width for interpolation in neural ODEs

Antonio Álvarez-López et al. Neural Netw. 2024 Dec.
Free article

Abstract

Neural ordinary differential equations have emerged as a natural tool for supervised learning from a control perspective, yet a complete understanding of the role played by their architecture remains elusive. In this work, we examine the interplay between the width p and the number of transitions between layers L (corresponding to a depth of L+1). Specifically, we construct explicit controls interpolating either a finite dataset D, comprising N pairs of points in Rd, or two probability measures within a Wasserstein error margin ɛ>0. Our findings reveal a balancing trade-off between p and L, with L scaling as 1+O(N/p) for data interpolation, and as 1+Op-1+(1+p)-1ɛ-d for measures. In the high-dimensional and wide setting where d,p>N, our result can be refined to achieve L=0. This naturally raises the problem of data interpolation in the autonomous regime, characterized by L=0. We adopt two alternative approaches: either controlling in a probabilistic sense, or by relaxing the target condition. In the first case, when p=N we develop an inductive control strategy based on a separability assumption whose probability increases with d. In the second one, we establish an explicit error decay rate with respect to p which results from applying a universal approximation theorem to a custom-built Lipschitz vector field interpolating D.

Keywords: Depth; Neural ODEs; Simultaneous controllability; Transport control; Wasserstein distance; Width.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

LinkOut - more resources