Interplay between depth and width for interpolation in neural ODEs
- PMID: 39180909
- DOI: 10.1016/j.neunet.2024.106640
Interplay between depth and width for interpolation in neural ODEs
Abstract
Neural ordinary differential equations have emerged as a natural tool for supervised learning from a control perspective, yet a complete understanding of the role played by their architecture remains elusive. In this work, we examine the interplay between the width p and the number of transitions between layers L (corresponding to a depth of L+1). Specifically, we construct explicit controls interpolating either a finite dataset D, comprising N pairs of points in Rd, or two probability measures within a Wasserstein error margin ɛ>0. Our findings reveal a balancing trade-off between p and L, with L scaling as 1+O(N/p) for data interpolation, and as 1+Op-1+(1+p)-1ɛ-d for measures. In the high-dimensional and wide setting where d,p>N, our result can be refined to achieve L=0. This naturally raises the problem of data interpolation in the autonomous regime, characterized by L=0. We adopt two alternative approaches: either controlling in a probabilistic sense, or by relaxing the target condition. In the first case, when p=N we develop an inductive control strategy based on a separability assumption whose probability increases with d. In the second one, we establish an explicit error decay rate with respect to p which results from applying a universal approximation theorem to a custom-built Lipschitz vector field interpolating D.
Keywords: Depth; Neural ODEs; Simultaneous controllability; Transport control; Wasserstein distance; Width.
Copyright © 2024 The Authors. Published by Elsevier Ltd.. All rights reserved.
Conflict of interest statement
Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
MeSH terms
LinkOut - more resources
Full Text Sources
Miscellaneous