Combining Automated Lesion Risk and Change Assessment Improves Melanoma Detection: A Retrospective Accuracy Study
- PMID: 39182563
- DOI: 10.1016/j.jid.2024.07.027
Combining Automated Lesion Risk and Change Assessment Improves Melanoma Detection: A Retrospective Accuracy Study
Keywords: 3D total-body photography; Artificial intelligence; Melanoma; VECTRA.
Similar articles
-
Diagnostic performance of augmented intelligence with 2D and 3D total body photography and convolutional neural networks in a high-risk population for melanoma under real-world conditions: A new era of skin cancer screening?Eur J Cancer. 2023 Sep;190:112954. doi: 10.1016/j.ejca.2023.112954. Epub 2023 Jun 24. Eur J Cancer. 2023. PMID: 37453242
-
3D Whole-body skin imaging for automated melanoma detection.J Eur Acad Dermatol Venereol. 2023 May;37(5):945-950. doi: 10.1111/jdv.18924. Epub 2023 Mar 24. J Eur Acad Dermatol Venereol. 2023. PMID: 36708077
-
Clinician's Ability to Identify Non-Melanoma Skin Cancer on 3D-Total Body Photography Sectors that Were Initially Identified during In-Person Skin Examination with Dermoscopy.Dermatology. 2024;240(1):142-151. doi: 10.1159/000535031. Epub 2023 Nov 6. Dermatology. 2024. PMID: 37931611
-
A Narrative Review: Opportunities and Challenges in Artificial Intelligence Skin Image Analyses Using Total Body Photography.J Invest Dermatol. 2024 Jun;144(6):1200-1207. doi: 10.1016/j.jid.2023.11.007. Epub 2024 Jan 16. J Invest Dermatol. 2024. PMID: 38231164 Review.
-
Technological advances for the detection of melanoma: Advances in diagnostic techniques.J Am Acad Dermatol. 2020 Oct;83(4):983-992. doi: 10.1016/j.jaad.2020.03.121. Epub 2020 Apr 26. J Am Acad Dermatol. 2020. PMID: 32348823 Review.
Cited by
-
A Comparison of Skin Lesions' Diagnoses Between AI-Based Image Classification, an Expert Dermatologist, and a Non-Expert.Diagnostics (Basel). 2025 Apr 28;15(9):1115. doi: 10.3390/diagnostics15091115. Diagnostics (Basel). 2025. PMID: 40361933 Free PMC article.
LinkOut - more resources
Full Text Sources