Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2024 Dec 2;25(23):e202400580.
doi: 10.1002/cbic.202400580. Epub 2024 Oct 23.

Organ-On-A-Chip Devices: Technology Progress and Challenges

Affiliations
Review

Organ-On-A-Chip Devices: Technology Progress and Challenges

Pierre J Obeid et al. Chembiochem. .

Abstract

Organ-On-a-Chip (OOC) is a multichannel 3D-microfluidic cell-culture system incorporated in a chip that simulates the behavior of an organ. This technology relies on a multidisciplinary science that benefits from and contributes in the progress of many fields including microbiology, microfluidics, biomaterials, and bioengineering. This review article summarizes the progress and achievements of various organ-on-chip technologies. It highlights the significant advantages of this technology in terms of reducing animal testing and providing personalized medical responses. In addition, this paper demonstrates how OOC is becoming a promising and powerful tool in pharmaceutical research to combat diseases. It predicts not only the effects of drugs on the target organs but also, using body-on-a-chip systems, it may provide insights into the side effects of the drug delivery on the other organs. Likewise, the models used for the construction of various organ-on-a-chip devices are investigated along with the design and materials of microfluidic devices. For each OOC, the integrated monitoring devices within the chips (e. g., sensors and biosensors) are discussed. We also discuss the evolution of FDA regulations and the potential in the near future for integrating OOCs into protocols that support and reduce the need for and the failure rates in preclinical and clinical studies.

Keywords: Biomaterials; Human-on-a-chip; Microfluidic devices; Organ-on-a-chip; Sensors and biosensors.

PubMed Disclaimer

References

    1. C. M. Leung, P. de Haan, K. Ronaldson-Bouchard, G. A. Kim, J. Ko, H. S. Rho, Z. Chen, P. Habibovic, N. L. Jeon, S. Takayama, M. L. Shuler, G. Vunjak-Novakovic, O. Frey, E. Verpoorte, Y. C. Toh, Nat. Rev. Meth. Primers 2022, 2 (1), 33.
    1. Y. Zhao, S. Landau, S. Okhovatian, C. Liu, R. Xing, Z. Lu, B. Fook, L. Lai, Q. Wu, J. Kieda, K. Cheung, S. Rajasekar, K. Jozani, B. Zhang, M. Radisic, Nat. Rev. Bioeng. 2024, 2, 588–608.
    1. A. Chmayssem, N. Verplanck, F. Boizot, M. Alessio, L. Santos, V. Mourier, S. Vignoud, F. Navarro, P. Mailley, MicroTAS 2021–25th International Conference on Miniaturized Systems for Chemistry and Life Sciences 2021.
    1. J. E. Sosa-Hernández, A. M. Villalba-Rodríguez, K. D. Romero-Castillo, M. A. Aguilar-Aguila-Isaías, I. E. García-Reyes, A. Hernández-Antonio, I. Ahmed, A. Sharma, R. Parra-Saldívar, H. M. N. Iqbal, Micromachines (Basel) 2018, 9 (10)536.
    1. N. Alépée, A. Bahinski, M. Daneshian, B. De Wever, E. Fritsche, A. Goldberg, J. Hansmann, T. Hartung, J. Haycock, H. T. Hogberg, L. Hoelting, J. M. Kelm, S. Kadereit, E. McVey, R. Landsiedel, M. Leist, M. Lübberstedt, F. Noor, C. Pellevoisin, D. Petersohn, U. Pfannenbecker, K. Reisinger, T. Ramirez, B. Rothen-Rutishauser, M. Schäfer-Korting, K. Zeilinger, M. G. Zurich, ALTEX 2014, 31 (4), 441–477.

LinkOut - more resources