Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Jul 19;15(33):13459-13465.
doi: 10.1039/d4sc02821j. eCollection 2024 Aug 22.

The merger of electro-reduction and hydrogen bonding activation for a radical Smiles rearrangement

Affiliations

The merger of electro-reduction and hydrogen bonding activation for a radical Smiles rearrangement

Liyuan Lan et al. Chem Sci. .

Abstract

The reductive activation of chemical bonds at less negative potentials provides a foundation for high functional group tolerance and selectivity, and it is one of the central topics in organic electrosynthesis. Along this line, we report the design of a dual-activation mode by merging electro-reduction with hydrogen bonding activation. As a proof of principle, the reduction potential of N-phenylpropiolamide was shifted positively by 218 mV. Enabled by this strategy, the radical Smiles rearrangement of N-arylpropiolamides without external radical precursors and prefunctionalization steps was accomplished. [DBU][HOAc], a readily accessible ionic liquid, was exploited for the first time both as a hydrogen bonding donor and as a supporting electrolyte.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts to declare.

Figures

Scheme 1
Scheme 1. The collaboration between electro-reduction and hydrogen bonding and the reported strategies to radical Smiles rearrangement.
Scheme 2
Scheme 2. The substrate scope. aReaction conditions: 1a (0.3 mmol), 2 (0.3 mmol), DMSO (4 mL), graphite anode (1 cm × 1 cm × 0.2 cm), foamed nickel cathode (1 cm × 1 cm × 0.2 cm), J = 10 mA cm−2, N2, rt, 8 h; isolated yield. aJ = 8 mA cm−2. bJ = 5 mA cm−2.
Fig. 1
Fig. 1. CV experiments.
Fig. 2
Fig. 2. 1H NMR experiments.
Scheme 3
Scheme 3. The control experiments.
Scheme 4
Scheme 4. A plausible mechanism accounting for the generation of 3.

References

    1. Recent reviews on organic electrosynthesis, see:

    2. Novaes L. F. T. Liu J.-J. Shen Y.-F. Lu L.-X. Meinhardt J. M. Lin S. Chem. Soc. Rev. 2021;50:7941. doi: 10.1039/D1CS00223F. - DOI - PMC - PubMed
    3. Lam K. Wheelhouse K. M. P. Org. Process Res. Dev. 2021;25:2579. doi: 10.1021/acs.oprd.1c00434. - DOI
    4. Tay N. E. S. Lehnherr D. Rovis T. Chem. Rev. 2022;122:2487. doi: 10.1021/acs.chemrev.1c00384. - DOI - PMC - PubMed
    5. Klein M. Waldvogel S. R. Angew. Chem., Int. Ed. 2022;61:e202204140. doi: 10.1002/anie.202204140. - DOI - PMC - PubMed
    6. Malapit C. A. Prater M. B. Cabrera-Pardo J. R. Li M. Pham T. D. McFadden T. P. Blank S. Minteer S. D. Chem. Rev. 2022;122:3180. doi: 10.1021/acs.chemrev.1c00614. - DOI - PMC - PubMed
    7. Liu Y.-W. Li P.-F. Wang Y.-W. Qiu Y.-A. Angew. Chem., Int. Ed. 2023;62:e202306679. doi: 10.1002/anie.202306679. - DOI - PubMed
    8. Wang Y.-L. Dana S. Long H. Xu Y. Li Y.-J. Kaplaneris N. Ackermann L. Chem. Rev. 2023;123:11269. doi: 10.1021/acs.chemrev.3c00158. - DOI - PMC - PubMed
    9. Kawamata Y. and Baran P., ChemRxiv, 2023, preprint, 10.26434/chemrxiv-2023-glvvh - DOI
    10. Francke R. Little R. D. Curr. Opin. Electrochem. 2023;40:101315. doi: 10.1016/j.coelec.2023.101315. - DOI
    11. Zeng L. Wang J.-X. Wang D.-X. Yi H. Lei A.-W. Angew. Chem., Int. Ed. 2023;62:e202309620. doi: 10.1002/anie.202309620. - DOI - PubMed
    12. Hilt G. Curr. Opin. Electrochem. 2024;43:101425. doi: 10.1016/j.coelec.2023.101425. - DOI
    13. Chen N. Wu Z.-J. Xu H.-C. Isr. J. Chem. 2024;64:e202300097. doi: 10.1002/ijch.202300097. - DOI
    14. and reviews cited therein.

    1. Wang F. Stahl S. S. Acc. Chem. Res. 2020;53:561. doi: 10.1021/acs.accounts.9b00544. - DOI - PMC - PubMed
    1. Francke R. Little R. D. Chem. Soc. Rev. 2014;43:2492. doi: 10.1039/C3CS60464K. - DOI - PubMed
    2. Yan M. Kawamata Y. Baran P. S. Chem. Rev. 2017;117:13230. doi: 10.1021/acs.chemrev.7b00397. - DOI - PMC - PubMed
    3. Inagi S. Fuchigami T. Curr. Opin. Electrochem. 2017;2:32. doi: 10.1016/j.coelec.2017.02.007. - DOI
    4. Krueger R. Moeller K. D. J. Org. Chem. 2021;86:15847. doi: 10.1021/acs.joc.1c01609. - DOI - PMC - PubMed
    1. Hardwick T. Ahmed N. ACS Sustain. Chem. Eng. 2021;9:4324. doi: 10.1021/acssuschemeng.0c08434. - DOI
    2. Huang H. Steiniger K. A. Lambert T. H. J. Am. Chem. Soc. 2022;144:12567. doi: 10.1021/jacs.2c01914. - DOI - PubMed
    3. Wu S.-Z. Kaur J. Karl T. A. Tian X.-H. Barham J. P. Angew. Chem., Int. Ed. 2022;61:e202107811. doi: 10.1002/anie.202107811. - DOI - PMC - PubMed
    4. Grimaud L. Lakhdar S. Vitale M. R. Curr. Opin. Electrochem. 2023;40:101307. doi: 10.1016/j.coelec.2023.101307. - DOI
    5. Lepori M. Schmid S. Barham J. P. Beilstein J. Org. Chem. 2023;19:1055. doi: 10.3762/bjoc.19.81. - DOI - PMC - PubMed
    6. Edgecomb J. M. Alektiar S. N. Cowper N. G. W. Sowin J. A. Wickens Z. K. J. Am. Chem. Soc. 2023;145:20169. doi: 10.1021/jacs.3c06347. - DOI - PMC - PubMed
    1. Doyle A. G. Jacobsen E. N. Chem. Rev. 2007;107:5713. doi: 10.1021/cr068373r. - DOI - PubMed

LinkOut - more resources