Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Sep 11;146(36):25088-25100.
doi: 10.1021/jacs.4c08080. Epub 2024 Aug 26.

The Electrochemical Peroxydisulfate-Oxalate Autocatalytic Reaction

Affiliations

The Electrochemical Peroxydisulfate-Oxalate Autocatalytic Reaction

Jordyn N Janusz et al. J Am Chem Soc. .

Abstract

Aqueous solutions containing both the strong oxidant, peroxydisulfate (S2O82-), and the strong reductant, oxalate (C2O42-), are thermodynamically unstable due to the highly exothermic homogeneous redox reaction: S2O82- + C2O42- → 2 SO42- + 2 CO2G0 = -490 kJ/mol). However, at room temperature, this reaction does not occur to a significant extent over the time scale of a day due to its inherently slow kinetics. We demonstrate that the S2O82-/C2O42- redox reaction occurs rapidly, once initiated by the Ru(NH3)62+-mediated 1e- reduction of S2O82- to form S2O83•-, which rapidly undergoes bond cleavage to form SO42- and the highly oxidizing radical SO4•-. Theoretically, the mediated electrochemical generation of a single molecule of S2O83•- can initiate an autocatalytic cycle that consumes both S2O82- and C2O42- in bulk solution. Several experimental demonstrations of S2O82-/C2O42- autocatalysis are presented. Differential electrochemical mass spectrometry measurements demonstrate that CO2 is generated in solution for at least 10 min following a 30-s initiation step. Quantitative bulk electrolysis of S2O82- in solutions containing excess C2O42- is initiated by electrogeneration of immeasurably small quantities of S2O83•-. Capture of CO2 as BaCO3 during electrolysis additionally confirms the autocatalytic generation of CO2. First-principles density functional theory calculations, ab initio molecular dynamics simulations, and finite difference simulations of cyclic voltammetric responses are presented that support and provide additional insights into the initiation and mechanism of S2O82-/C2O42- autocatalysis. Preliminary evidence indicates that autocatalysis also results in a chemical traveling reaction front that propagates into the solution normal to the planar electrode surface.

PubMed Disclaimer

LinkOut - more resources