Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2024 Sep 11;72(36):19539-19548.
doi: 10.1021/acs.jafc.4c04284. Epub 2024 Aug 26.

Recent Progress in Physiological Significance and Biosynthesis of Lacto- N-triose II: Insights into a Crucial Biomolecule

Affiliations
Review

Recent Progress in Physiological Significance and Biosynthesis of Lacto- N-triose II: Insights into a Crucial Biomolecule

Cuie Guang et al. J Agric Food Chem. .

Abstract

Lacto-N-triose II (LNTri II), an important precursor for human milk oligosaccharide (HMOs) synthesis, has garnered significant attention due to its structural features and physiological properties. Composed of galactose (Gal), N-acetylglucosamine (GlcNAc), and glucose (Glc), with the chemical structure GlcNAcβ1,3Galβ1,4Glc, the distinctive structure of LNTri II confers various physiological functions such as promoting the growth of beneficial bacteria, regulating the infant immune system, and preventing certain gastrointestinal diseases. Extensive research efforts have been dedicated to elucidating efficient enzymatic synthesis pathways for LNTri II production, with particular emphasis on the transglycosylation activity of β-N-acetylhexosaminidases and the action of β-1,3-N-acetylglucosaminyltransferases. Additionally, metabolic engineering and cell factory approaches have been explored, harnessing the potential of engineered microbial hosts for the large-scale biosynthesis of LNTri II. This review summarizes the structure, derivatives, physiological effects, and biosynthesis of LNTri II.

Keywords: biosynthesis; derivatization; lacto-N-triose II; physiological effects.

PubMed Disclaimer

LinkOut - more resources