Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Aug;2(8):778-792.
doi: 10.1038/s44161-023-00314-x. Epub 2023 Aug 11.

MCM8-mediated mitophagy protects vascular health in response to nitric oxide signaling in a mouse model of Kawasaki disease

Affiliations

MCM8-mediated mitophagy protects vascular health in response to nitric oxide signaling in a mouse model of Kawasaki disease

Meng Lin et al. Nat Cardiovasc Res. 2023 Aug.

Abstract

Mitophagy is a major quality control pathway that removes unwanted or dysfunctional mitochondria and plays an essential role in vascular health. Here we show that MCM8 expression is significantly decreased in children with Kawasaki disease (KD) who developed coronary artery aneurysms. Mechanistically, we discovered that nitric oxide signaling promotes TRIM21-mediated MCM8 ubiquitination, which disrupts its interaction with MCM9 and promotes its cytosolic export. In the cytosol, MCM8 relocates to the mitochondria pore-forming proteins and promotes their ubiquitination by TRIM21. In addition, MCM8 directly recruits LC3 via its LC3-interacting region (LIR) motif and initiates mitophagy. This suppresses mitochondrial DNA-mediated activation of type I interferon via cGAS and STING. Mice that are deficient in Mcm8, Trim21 and Nos2 or reconstituted with the East-Asian-specific MCM8-P276 variant develop more severe coronary artery vasculopathy in the Lactobacillus casei extract-induced KD model. Collectively, the data suggest that MCM8 protects vascular health in the KD setting.

PubMed Disclaimer

References

    1. Meier, T. et al. Cardiovascular mortality attributable to dietary risk factors in 51 countries in the WHO European Region from 1990 to 2016: a systematic analysis of the Global Burden of Disease Study. Eur. J. Epidemiol. 34, 37–55 (2019). - PubMed - DOI
    1. Ungvari, Z., Tarantini, S., Donato, A. J., Galvan, V. & Csiszar, A. Mechanisms of vascular aging. Circ. Res. 123, 849–867 (2018). - PubMed - PMC - DOI
    1. Forstermann, U. Nitric oxide and oxidative stress in vascular disease. Pflugers Arch. 459, 923–939 (2010). - PubMed - DOI
    1. Csiszar, A. et al. Aging-induced phenotypic changes and oxidative stress impair coronary arteriolar function. Circ. Res. 90, 1159–1166 (2002). - PubMed - DOI
    1. Farah, C., Michel, L. Y. M. & Balligand, J. L. Nitric oxide signalling in cardiovascular health and disease. Nat. Rev. Cardiol. 15, 292–316 (2018). - PubMed - DOI

MeSH terms