Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Oct;25(10):1845-1857.
doi: 10.1038/s41590-024-01923-9. Epub 2024 Aug 28.

NaCl enhances CD8+ T cell effector functions in cancer immunotherapy

Affiliations

NaCl enhances CD8+ T cell effector functions in cancer immunotherapy

Caterina Scirgolea et al. Nat Immunol. 2024 Oct.

Abstract

CD8+ T cells control tumors but inevitably become dysfunctional in the tumor microenvironment. Here, we show that sodium chloride (NaCl) counteracts T cell dysfunction to promote cancer regression. NaCl supplementation during CD8+ T cell culture induced effector differentiation, IFN-γ production and cytotoxicity while maintaining the gene networks responsible for stem-like plasticity. Accordingly, adoptive transfer of tumor-specific T cells resulted in superior anti-tumor immunity in a humanized mouse model. In mice, a high-salt diet reduced the growth of experimental tumors in a CD8+ T cell-dependent manner by inhibiting terminal differentiation and enhancing the effector potency of CD8+ T cells. Mechanistically, NaCl enhanced glutamine consumption, which was critical for transcriptional, epigenetic and functional reprogramming. In humans, CD8+ T cells undergoing antigen recognition in tumors and predicting favorable responses to checkpoint blockade immunotherapy resembled those induced by NaCl. Thus, NaCl metabolism is a regulator of CD8+ T cell effector function, with potential implications for cancer immunotherapy.

PubMed Disclaimer

References

    1. Mahnke, Y. D., Brodie, T. M., Sallusto, F., Roederer, M. & Lugli, E. The who’s who of T-cell differentiation: human memory T-cell subsets. Eur. J. Immunol. 43, 2797–2809 (2013). - PubMed - DOI
    1. McLane, L. M., Abdel-Hakeem, M. S. & Wherry, E. J. CD8 T cell exhaustion during chronic viral infection and cancer. Annu. Rev. Immunol. 37, 457–495 (2019). - PubMed - DOI
    1. Alfei, F. et al. TOX reinforces the phenotype and longevity of exhausted T cells in chronic viral infection. Nature 571, 265–269 (2019). - PubMed - DOI
    1. Joyce, J. A. & Fearon, D. T. T cell exclusion, immune privilege, and the tumor microenvironment. Science 348, 74–80 (2015). - PubMed - DOI
    1. Zehn, D., Thimme, R., Lugli, E., de Almeida, G. P. & Oxenius, A. ‘Stem-like’ precursors are the fount to sustain persistent CD8+ T cell responses. Nat. Immunol. 23, 836–847 (2022). - PubMed - DOI