Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Oct 2;32(10):3372-3401.
doi: 10.1016/j.ymthe.2024.08.022. Epub 2024 Aug 27.

A small TAT-TrkB peptide prevents BDNF receptor cleavage and restores synaptic physiology in Alzheimer's disease

Affiliations

A small TAT-TrkB peptide prevents BDNF receptor cleavage and restores synaptic physiology in Alzheimer's disease

João Fonseca-Gomes et al. Mol Ther. .

Erratum in

  • A small TAT-TrkB peptide prevents BDNF receptor cleavage and restores synaptic physiology in Alzheimer's disease.
    Fonseca-Gomes J, Costa-Coelho T, Ferreira-Manso M, Inteiro-Oliveira S, Vaz SH, Alemãn-Serrano N, Atalaia-Barbacena H, Ribeiro-Rodrigues L, Ramalho RM, Pinto R, Miranda HV, Tanqueiro SR, de Almeida-Borlido C, Ramalho MJ, Miranda-Lourenço C, Belo RF, Ferreira CB, Neves V, Rombo DM, Viais R, Umemori J, Martins IC, Jerónimo-Santos A, Caetano A, Manso N, Mäkinen P, Marttinen M, Takalo M, Bremang M, Pike I, Haapasalo A, Loureiro JA, Pereira MC, Santos NC, Outeiro TF, Castanho MARB, Fernandes A, Hiltunen M, Duarte CB, Castrén E, de Mendonça A, Sebastião AM, Rodrigues TM, Diógenes MJ. Fonseca-Gomes J, et al. Mol Ther. 2025 Jan 8;33(1):421. doi: 10.1016/j.ymthe.2024.12.005. Epub 2024 Dec 12. Mol Ther. 2025. PMID: 39672159 Free PMC article. No abstract available.

Abstract

In Alzheimer's disease (AD), amyloid β (Aβ)-triggered cleavage of TrkB-FL impairs brain-derived neurotrophic factor (BDNF) signaling, thereby compromising neuronal survival, differentiation, and synaptic transmission and plasticity. Using cerebrospinal fluid and postmortem human brain samples, we show that TrkB-FL cleavage occurs from the early stages of the disease and increases as a function of pathology severity. To explore the therapeutic potential of this disease mechanism, we designed small TAT-fused peptides and screened their ability to prevent TrkB-FL receptor cleavage. Among these, a TAT-TrkB peptide with a lysine-lysine linker prevented TrkB-FL cleavage both in vitro and in vivo and rescued synaptic deficits induced by oligomeric Aβ in hippocampal slices. Furthermore, this TAT-TrkB peptide improved the cognitive performance, ameliorated synaptic plasticity deficits and prevented Tau pathology progression in vivo in the 5XFAD mouse model of AD. No evidence of liver or kidney toxicity was found. We provide proof-of-concept evidence for the efficacy and safety of this therapeutic strategy and anticipate that this TAT-TrkB peptide has the potential to be a disease-modifying drug that can prevent and/or reverse cognitive deficits in patients with AD.

Keywords: Alzheimer’s disease; BDNF; TAT peptide; TAT-TrkB; TrkB receptor; amyloid β; drug screening; hippocampal plasticity; learning; memory; protein cleavage.

PubMed Disclaimer

Conflict of interest statement

Declaration of interests J.F.-G., M.J.D., A.J.-S., C.B.D., and A.M.S. are authors of a patent (application no. PCT/PT2021/050011; priority date: April 1, 2020) concerning the prevention of TrkB-FL cleavage as a therapeutic strategy.

References

    1. Huang E.J., Reichardt L.F. Neurotrophins: roles in neuronal development and function. Annu. Rev. Neurosci. 2001;24:677–736. doi: 10.1146/annurev.neuro.24.1.677. - DOI - PMC - PubMed
    1. GBD 2019 Dementia Forecasting Collaborators Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: an analysis for the Global Burden of Disease Study 2019. Lancet Public Health. 2022;7:e105–e125. doi: 10.1016/S2468-2667(21)00249-8. - DOI - PMC - PubMed
    1. Scheltens P., De Strooper B., Kivipelto M., Holstege H., Chételat G., Teunissen C.E., Cummings J., van der Flier W.M. Alzheimer’s disease. Lancet. 2021;397:1577–1590. doi: 10.1016/S0140-6736(20)32205-4. - DOI - PMC - PubMed
    1. Masters C.L., Simms G., Weinman N.A., Multhaup G., McDonald B.L., Beyreuther K. Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc. Natl. Acad. Sci. USA. 1985;82:4245–4249. doi: 10.1073/pnas.82.12.4245. - DOI - PMC - PubMed
    1. Goedert M., Wischik C.M., Crowther R.A., Walker J.E., Klug A. Cloning and sequencing of the cDNA encoding a core protein of the paired helical filament of Alzheimer disease: identification as the microtubule-associated protein tau. Proc. Natl. Acad. Sci. USA. 1988;85:4051–4055. doi: 10.1073/pnas.85.11.4051. - DOI - PMC - PubMed

MeSH terms