Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Sep 16;7(9):5948-5955.
doi: 10.1021/acsabm.4c00512. Epub 2024 Aug 29.

Metasurface Absorber for Blood Hemoglobin Concentration

Affiliations

Metasurface Absorber for Blood Hemoglobin Concentration

Behnaz Rashidi et al. ACS Appl Bio Mater. .

Abstract

In this study, a biosensing scenario is developed for monitoring blood quality based on the detection of blood hemoglobin concentration. The procedure involves considering the blood sample as the dielectric with different refractive indexes for different concentrations of hemoglobin. Usually, the sensitivity to design parameters is the major issue with the metasurface-based detection. To address this issue, a three-layer graphene-based wave absorber is designed and modeled using passive circuit elements. The major idea behind this work is to maximize the device sensitivity against the blood sample. The research methodology involves impedance matching between the device and the surrounding environment, while full-wave simulation is also performed and compared to ensure circuit view accuracy. The findings suggest that the proposed graphene-based absorber can efficiently monitor blood quality via dual absorption peaks. The simulation results extracted from impedance matching and the full-wave method indicate frequency shifts of the second absorption peak. These shift values are interpreted based on hemoglobin concentration. Additionally, ample analyses are provided to show the reliability of the proposed absorber against geometrical aspects, incident angle, external stimulation, and the graphene electron relaxation time.

Keywords: circuit model; full wave simulation; graphene; hemoglobin; impedance matching.

PubMed Disclaimer

References