Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Sep 17;63(18):2344-2351.
doi: 10.1021/acs.biochem.4c00264. Epub 2024 Aug 29.

Whole Cell Luminescence-Based Screen for Inhibitors of the Bacterial Sec Machinery

Affiliations

Whole Cell Luminescence-Based Screen for Inhibitors of the Bacterial Sec Machinery

Tia Salter et al. Biochemistry. .

Abstract

There is a pressing need for new antibiotics to combat rising resistance to those already in use. The bacterial general secretion (Sec) system has long been considered a good target for novel antimicrobials thanks to its irreplacable role in maintaining cell envelope integrity, yet the lack of a robust, high-throughput method to screen for Sec inhibition has so far hampered efforts to realize this potential. Here, we have adapted our recently developed in vitro assay for Sec activity─based on the split NanoLuc luciferase─to work at scale and in living cells. A simple counterscreen allows compounds that specifically target Sec to be distinguished from those with other effects on cellular function. As proof of principle, we have applied this assay to a library of 5000 compounds and identified a handful of moderately effective in vivo inhibitors of Sec. Although these hits are unlikely to be potent enough to use as a basis for drug development, they demonstrate the efficacy of the screen. We therefore anticipate that the methods presented here will be scalable to larger compound libraries, in the ultimate quest for Sec inhibitors with clinically relevant properties.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing financial interest.

Figures

Figure 1
Figure 1
Design of the whole cell NanoBiT protein translocation assay. (A) The test substrate (pSpy-pep86) is expressed in E. coli and exported to the periplasm by the native Sec machinery. (B) For the assay, cell growth is stopped by cooling, then EDTA and lysozyme are added to disrupt the outer membrane and cell wall, respectively. This allows 11S to interact with periplasmic pep86, giving a luminescent signal proportional to the amount of secreted pSpy-pep86. (C) The counter assay is performed exactly like the assay, but with the addition of Triton X. This also disrupts the inner membrane, giving a luminescent signal proportional to the total amount of pSpy-pep86. (D) Maximum luminescence signal for cells with uninduced pSpy-pep86 plasmid (unind; background), mSpy-pep86 (i.e., lacking the signal sequence and thus not exported; mSpy; negative control), and pSpy-pep86 (pSpy; experiment). Data are normalized to the maximum signal for pSpy, and represent the mean and SEM from three biological replicates. (E) As in panel (D), but for the counter-assay. Time courses from which the data in panels (D, E) are derived are shown in Figure S1.
Figure 2
Figure 2
Assay validation with control compounds. Maximum luminescence (Lmax) from the assay (solid shapes) and counter-assay (open shapes) as a function of concentration, for various compounds. In each case, data are normalized to the untreated sample (dashed horizontal line), and show the average ± SEM from three biological replicates. Lines are best fits to the Hill equation (see the Materials and Methods section) for the assay (solid lines) and counter-assay (dotted lines). (A) CJ-21058, added from a 10 mM stock in DMSO. The orange lines show the effect of the same amount of DMSO (see panel B). (B) DMSO. (C) CCCP. The gray triangles show the cell density (determined by absorbance at 600 nm) as a function of CCCP concentration, and represent the mean ± SEM from six biological replicates. Note that CCCP is added from a 4 mM stock in DMSO; this gives 1.25% DMSO at 50 μM CCCP – too low to affect the assay (see panel B). (D) Sodium azide (NaN3). (E) Polymyxin B (pink diamonds), tetracycline (mustard circles) and kanamycin (mauve triangles).
Figure 3
Figure 3
Identification of four lead compounds from a library of 5000. (A) Schematic representation of the screening process. (B–E) Assay and counter-assay titrations of the four successful hit compounds, as in Figure 2. The chemical structures of the hits are shown below.
Figure 4
Figure 4
Uncoupling activity of the four hit compounds. DiOC2(3) fluorescence (relative to untreated cells) of the four lead compounds at three concentrations. Data are the average ± SEM from three biological replicates. The equivalent signal for 5 μM CCCP is shown as an orange line (with dotted line for SEM).

Similar articles

References

    1. ABRAHAM E. P.; CHAIN E. An Enzyme from Bacteria able to Destroy Penicillin. Nature 1940, 146, 837–837. 10.1038/146837a0. - DOI - PubMed
    1. Murray C. J. L.; Ikuta K. S.; Sharara F.; Swetschinski L.; Robles Aguilar G.; Gray A.; Han C.; Bisignano C.; Rao P.; Wool E.; Johnson S. C.; Browne A. J.; Chipeta M. G.; Fell F.; Hackett S.; Haines-Woodhouse G.; Kashef Hamadani B. H.; Kumaran E. A. P.; McManigal B.; Achalapong S.; Agarwal R.; Akech S.; Albertson S.; Amuasi J.; Andrews J.; Aravkin A.; Ashley E.; Babin F. X.; Bailey F.; Baker S.; Basnyat B.; Bekker A.; Bender R.; Berkley J. A.; Bethou A.; Bielicki J.; Boonkasidecha S.; Bukosia J.; Carvalheiro C.; Castañeda-Orjuela C.; Chansamouth V.; Chaurasia S.; Chiurchiù S.; Chowdhury F.; Clotaire Donatien R.; Cook A. J.; Cooper B.; Cressey T. R.; Criollo-Mora E.; Cunningham M.; Darboe S.; Day N. P. J.; De Luca M.; Dokova K.; Dramowski A.; Dunachie S. J.; Duong Bich T.; Eckmanns T.; Eibach D.; Emami A.; Feasey N.; Fisher-Pearson N.; Forrest K.; Garcia C.; Garrett D.; Gastmeier P.; Giref A. Z.; Greer R. C.; Gupta V.; Haller S.; Haselbeck A.; Hay S. I.; Holm M.; Hopkins S.; Hsia Y.; Iregbu K. C.; Jacobs J.; Jarovsky D.; Javanmardi F.; Jenney A. W. J.; Khorana M.; Khusuwan S.; Kissoon N.; Kobeissi E.; Kostyanev T.; Krapp F.; Krumkamp R.; Kumar A.; Kyu H. H.; Lim C.; Lim K.; Limmathurotsakul D.; Loftus M. J.; Lunn M.; Ma J.; Manoharan A.; Marks F.; May J.; Mayxay M.; Mturi N.; Munera-Huertas T.; Musicha P.; Musila L. A.; Mussi-Pinhata M. M.; Naidu R. N.; Nakamura T.; Nanavati R.; Nangia S.; Newton P.; Ngoun C.; Novotney A.; Nwakanma D.; Obiero C. W.; Ochoa T. J.; Olivas-Martinez A.; Olliaro P.; Ooko E.; Ortiz-Brizuela E.; Ounchanum P.; Pak G. D.; Paredes J. L.; Peleg A. Y.; Perrone C.; Phe T.; Phommasone K.; Plakkal N.; Ponce-de-Leon A.; Raad M.; Ramdin T.; Rattanavong S.; Riddell A.; Roberts T.; Robotham J. V.; Roca A.; Rosenthal V. D.; Rudd K. E.; Russell N.; Sader H. S.; Saengchan W.; Schnall J.; Scott J. A. G.; Seekaew S.; Sharland M.; Shivamallappa M.; Sifuentes-Osornio J.; Simpson A. J.; Steenkeste N.; Stewardson A. J.; Stoeva T.; Tasak N.; Thaiprakong A.; Thwaites G.; Tigoi C.; Turner C.; Turner P.; van Doorn H. R.; Velaphi S.; Vongpradith A.; Vongsouvath M.; Vu H.; Walsh T.; Walson J. L.; Waner S.; Wangrangsimakul T.; Wannapinij P.; Wozniak T.; Young Sharma T. E. M. W.; Yu K. C.; Zheng P.; Sartorius B.; Lopez A. D.; Stergachis A.; Moore C.; Dolecek C.; Naghavi M. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 2022, 399, 629–655. 10.1016/S0140-6736(21)02724-0. - DOI - PMC - PubMed
    1. World Health Organisation 2021 Antibacterial agents in clinical and preclinical development: an overview and analysis; WHO; 2022
    1. Chopra I. The 2012 Garrod Lecture: Discovery of antibacterial drugs in the 21st century. J. Antimicrob. Chemother. 2013, 68, 496–505. 10.1093/jac/dks436. - DOI - PubMed
    1. Butler M. S.; Blaskovich M. A.; Cooper M. A. Antibiotics in the clinical pipeline at the end of 2015. J. Antibiot. 2017, 70, 3–24. 10.1038/ja.2016.72. - DOI - PubMed

Publication types

MeSH terms