Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2024 Nov 5:479:135485.
doi: 10.1016/j.jhazmat.2024.135485. Epub 2024 Aug 15.

Comparative quantitative phosphoproteomic and parallel reaction monitoring analysis of soybean roots under aluminum stress identify candidate phosphoproteins involved in aluminum resistance capacity

Affiliations
Comparative Study

Comparative quantitative phosphoproteomic and parallel reaction monitoring analysis of soybean roots under aluminum stress identify candidate phosphoproteins involved in aluminum resistance capacity

Ying He et al. J Hazard Mater. .

Abstract

Aluminum (Al) toxicity adversely impacts soybean (Glycine max) growth in acidic soil. Reversible protein phosphorylation plays an important role in adapting to adverse environmental conditions by regulating multiple physiological processes including signal transduction, energy coupling and metabolism adjustment in higher plant. This study aimed to reveal the Al-responsive phosphoproteins to understand their putative function and involvement in the regulation of Al resistance in soybean root. We used immobilized metal affinity chromatography to enrich the key phosphoproteins from soybean root apices at 0, 4, or 24 h Al exposure. These phosphoproteins were detected using liquid chromatography-tandem mass spectrometry measurement, verified by parallel reaction monitoring (PRM), and functionally characterized via overexpression in soybean hairy roots. A total of 638 and 686 phosphoproteins were identified as differentially enriched between the 4-h and 0-h, and the 24-h and 0-h Al treatment comparison groups, respectively. Typically, the phosphoproteins involved in biological processes including cell wall modification, and RNA and protein metabolic regulation displayed patterns of decreasing enrichment (clusters 3, 5 and 6), however, the phosphoproteins involved in the transport and metabolic processes of various substrates, and signal transduction pathways showed increased enrichment after 24 h of Al treatment. The enrichment of phosphoproteins in organelle organization bottomed after 4 h of Al treatment (cluster 1). Next, we selected 26 phosphoproteins from the phosphoproteomic profiles, assessed their enrichment status using PRM, and detected enrichment patterns similar to those observed via phosphoproteomic analysis. Among them, 15 phosphoproteins were found to reduce the accumulation of Al and callose in Al-stressed soybean root apices when their corresponding genes were individually overexpressed in soybean hairy roots. In summary, the findings of this study facilitated a comprehensive understanding of the protein phosphorylation events involved in Al resistance responses and revealed some critical phosphoproteins that enhance Al resistance in soybean roots.

Keywords: Acid soil; Aluminum stress; Glycine max; Phosphoproteomics; Resistance mechanism.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

Publication types

LinkOut - more resources