Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Oct:374:590-605.
doi: 10.1016/j.jconrel.2024.08.034. Epub 2024 Aug 30.

Injectable dual thermoreversible hydrogel for sustained intramuscular drug delivery

Affiliations

Injectable dual thermoreversible hydrogel for sustained intramuscular drug delivery

Fakhar Ud Din et al. J Control Release. 2024 Oct.

Abstract

Herein, we reported novel docetaxel-decorated solid lipid nanoparticle (DCT-SLN)-loaded dual thermoreversible system (DCT-DRTS) for intramuscular administration with reduced burst effect, sustained release and improved antitumor efficacy. The optimized DCT-DRTs was subjected to in-vitro and in-vivo analyses. Antitumor evaluation of the DCT-DRTS was executed and compared with DCT-hydrogel, and DCT-suspension trailed by the histopathological and immune-histochemical analyses. The DCT-SLN gave a mean particle size of 157 nm and entrapment efficiency of 93 %. It was a solid at room temperature, and changed to liquid at physiological temperature due to its melting point of about 32 °C. Unlikely, poloxamer mixture remained liquefied at 25-27 °C, however converted to gel at physiological temperature. This behavior demonstrated opposed reversible property of the DCT-SLN and poloxamer hydrogel in DCT-DRTS system, making it ideal for intramuscular administration and quick gelation inside the body. The DCT-DRTS sustained the drugs release and unlike DCT-hydrogel, the preliminary plasma concentration of DCT-DRTS was significantly reduced, overcoming the burst release. A meaningfully enhanced antitumor efficacy and improved survival rate was observed from DCT-DRTS in tumor cell xenograft athymic nude mice. Additionally, increased apoptotic and reduced proliferation markers were observed in DCT-DRTS treated tumor masses. It was concluded that DCT-DRTS may be a suitable choice for intramuscular administration of DCT with sustained release, improved bioavailability, reduced toxicity and enhanced antitumor effects.

Keywords: Bioavailability; Burst effect; Docetaxel; Dual thermoreversible system; Solid lipid nanoparticles; Sustained release; Tumor.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

MeSH terms

LinkOut - more resources