Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation

Genetic Architecture and Analysis Practices of Circulating Metabolites in the NHLBI Trans-Omics for Precision Medicine (TOPMed) Program

Nannan Wang et al. bioRxiv. .

Update in

  • Genetic architecture and analysis practices of circulating metabolites in the NHLBI Trans-Omics for Precision Medicine Program.
    Wang N, Ockerman FP, Zhou LY, Grove ML, Alkis T, Barnard J, Bowler RP, Clish CB, Chung S, Drzymalla E, Evans AM, Franceschini N, Gerszten RE, Gillman MG, Hutton SR, Kelly RS, Kooperberg C, Larson MG, Lasky-Su J, Meyers DA, Woodruff PG, Reiner AP, Rich SS, Rotter JI, Silverman EK, Vasan RS, Weiss ST, Wong KE, Wood AC, Wu L; NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium; Yarden R, Blackwell TW, Smith AV, Chen H, Raffield LM, Yu B. Wang N, et al. Am J Hum Genet. 2025 Sep 18:S0002-9297(25)00356-8. doi: 10.1016/j.ajhg.2025.08.022. Online ahead of print. Am J Hum Genet. 2025. PMID: 40972578

Abstract

Circulating metabolite levels partly reflect the state of human health and diseases and can be impacted by genetic determinants. Hundreds of loci associated with circulating metabolites have been identified; however, most findings focus on predominantly European ancestry or single-study analyses. Leveraging the rich metabolomics resources generated by the NHLBI Trans-Omics for Precision Medicine (TOPMed) Program, we harmonized and accessibly cataloged 1,729 circulating metabolites among 25,058 ancestrally diverse samples. We provided a set of reasonable strategies for outlier and imputation handling to process metabolite data. Following the practical analysis framework, we further performed a genome-wide association analysis on 1,135 selected metabolites using whole genome sequencing data from 16,359 individuals passing the quality control filters, and discovered 1,778 independent loci associated with 667 metabolites. Among 108 novel locus-metabolite pairs, we detected not only novel loci within previously implicated metabolite associated genes but also novel genes (such as GAB3 and VSIG4 located in the X chromosome) that have putative roles in metabolic regulation. In the sex-stratified analysis, we revealed 85 independent locus-metabolite pairs with evidence of sexual dimorphism, including well-known metabolic genes such as FADS2 , D2HGDH , SUGP1 , UTG2B17 , strongly supporting the importance of exploring sex difference in the human metabolome. Taken together, our study depicted the genetic contribution to circulating metabolite levels, providing additional insight into the understanding of human health.

PubMed Disclaimer

Publication types